skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012253

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper, we propose a novel residual-based data-driven closure strategy for reduced order models (ROMs) of under-resolved, convection-dominated problems. The new ROM closure model is constructed in a variational multiscale (VMS) framework by using the available full order model data and a model form ansatz that depends on the ROM residual. We emphasize that this closure modeling strategy is fundamentally different from the current data-driven ROM closures, which generally depend on the ROM coefficients. We investigate the new residual-based data-driven VMS ROM closure strategy in the numerical simulation of three test problems: (i) a one-dimensional parameter-dependent advection-diffusion problem; (ii) a two-dimensional time-dependent advection-diffusion-reaction problem with a small diffusion coefficient ($$\varepsilon = 1e-4$$ ε = 1 e - 4 ); and (iii) a two-dimensional flow past a cylinder at Reynolds number$$Re=1000$$ R e = 1000 . Our numerical investigation shows that the new residual-based data-driven VMS-ROM is more accurate than the standard coefficient-based data-driven VMS-ROM. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. ABSTRACT Numerical stabilization techniques are often employed in under‐resolved simulations of convection‐dominated flows to improve accuracy and mitigate spurious oscillations. Specifically, the evolve–filter–relax (EFR) algorithm is a framework that consists of evolving the solution, applying a filtering step to remove high‐frequency noise, and relaxing through a convex combination of filtered and original solutions. The stability and accuracy of the EFR solution strongly depend on two parameters, the filter radius and the relaxation parameter . Standard choices for these parameters are usually fixed in time, and related to the full order model setting, that is, the grid size for and the time step for . The key novelties with respect to the standard EFR approach are: (i) time‐dependent parameters and , and (ii) data‐driven adaptive optimization of the parameters in time, considering a fully‐resolved simulation as reference. In particular, we propose three different classes of optimized‐EFR (Opt‐EFR) strategies, aiming to optimize one or both parameters. The new Opt‐EFR strategies are tested in the under‐resolved simulation of a turbulent flow past a cylinder at . The Opt‐EFR proved to be more accurate than standard approaches by up to 99, while maintaining a similar computational time. In particular, the key new finding of our analysis is that such accuracy can be obtained only if the optimized objective function includes: (i) aglobalmetric (as the kinetic energy), and (ii)spatial gradients' information. 
    more » « less
  3. Free, publicly-accessible full text available October 1, 2026
  4. Free, publicly-accessible full text available April 1, 2026
  5. Free, publicly-accessible full text available April 1, 2026
  6. Free, publicly-accessible full text available January 1, 2026
  7. Reduced-order models (ROMs) have achieved a lot of success in reducing the computational cost of traditional numerical methods across many disciplines. In fluid dynamics, ROMs have been successful in providing efficient and relatively accurate solutions for the numerical simulation of laminar flows. For convection-dominated (e.g., turbulent) flows, however, standard ROMs generally yield inaccurate results, usually affected by spurious oscillations. Thus, ROMs are usually equipped with numerical stabilization or closure models in order to account for the effect of the discarded modes. The literature on ROM closures and stabilizations is large and growing fast. In this paper, instead of reviewing all the ROM closures and stabilizations, we took a more modest step and focused on one particular type of ROM closure and stabilization that is inspired by large eddy simulation (LES), a classical strategy in computational fluid dynamics (CFD). These ROMs, which we call LES-ROMs, are extremely easy to implement, very efficient, and accurate. Indeed, LES-ROMs are modular and generally require minimal modifications to standard (“legacy”) ROM formulations. Furthermore, the computational overhead of these modifications is minimal. Finally, carefully tuned LES-ROMs can accurately capture the average physical quantities of interest in challenging convection-dominated flows in science and engineering applications. LES-ROMs are constructed by leveraging spatial filtering, which is the same principle used to build classical LES models. This ensures a modeling consistency between LES-ROMs and the approaches that generated the data used to train them. It also “bridges” two distinct research fields (LES and ROMs) that have been disconnected until now. This paper is a review of LES-ROMs, with a particular focus on the LES concepts and models that enable the construction of LES-inspired ROMs and the bridging of LES and reduced-order modeling. This paper starts with a description of a versatile LES strategy called evolve–filter–relax (EFR) that has been successfully used as a full-order method for both incompressible and compressible convection-dominated flows. We present evidence of this success. We then show how the EFR strategy, and spatial filtering in general, can be leveraged to construct LES-ROMs (e.g., EFR-ROM). Several applications of LES-ROMs to the numerical simulation of incompressible and compressible convection-dominated flows are presented. Finally, we draw conclusions and outline several research directions and open questions in LES-ROM development. While we do not claim this review to be comprehensive, we certainly hope it serves as a brief and friendly introduction to this exciting research area, which we believe has a lot of potential in the practical numerical simulation of convection-dominated flows in science, engineering, and medicine. 
    more » « less