skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012357

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detrital thermochronology has been used to measure sediment source elevations, and thus to quantify spatial variations in sediment production and erosion in steep mountain catchments. Samples commonly include a small fraction of the sediment sizes present on mountain streambeds, which according to previous modeling may not adequately represent sediment production where hillslope sediment sizes vary or where sediment breaks down during transport. Here we explore what can be learned from multiple sizes by quantifying source elevation distributions for 12 sediment size classes collected from Inyo Creek in the eastern Sierra Nevada, California. To interpret these data, we use a new analytical framework that identifies both the elevations where sediment sources deviate from catchment hypsometry and the likelihood that observed cumulative deviations could occur by chance. We find that sediment in four gravel and cobble size classes originates preferentially from higher elevations, either because erosion rates are faster or because these sizes are disproportionately represented in the sediment from high elevations. Conversely, boulders in the stream originate mostly from low elevations near the sample point, possibly reflecting the breakdown of boulders from high elevations during transport. While source elevations of finer sediment sizes are statistically indistinguishable from hypsometry, we show that these sizes are unlikely to be consistent with uniform sediment production because they cannot be considered in isolation from the coarser sizes. Our source elevation distributions from sand, gravel, cobbles, and boulders show that no one size can tell the rich story of sediment production and evolution, and highlight opportunities for future work. 
    more » « less
  2. null (Ed.)
    Abstract Erosion at Earth’s surface exposes underlying bedrock to climate-driven chemical and physical weathering, transforming it into a porous, ecosystem-sustaining substrate consisting of weathered bedrock, saprolite, and soil. Weathering in saprolite is typically quantified from bulk geochemistry assuming physical strain is negligible. However, modeling and measurements suggest that strain in saprolite may be common, and therefore anisovolumetric weathering may be widespread. To explore this possibility, we quantified the fraction of porosity produced by physical weathering, FPP, at three sites with differing climates in granitic bedrock of the Sierra Nevada, California, USA. We found that strain produces more porosity than chemical mass loss at each site, indicative of strongly anisovolumetric weathering. To expand the scope of our study, we quantified FPP using available volumetric strain and mass loss data from granitic sites spanning a broader range of climates and erosion rates. FPP in each case is ≥0.12, indicative of widespread anisovolumetric weathering. Multiple regression shows that differences in precipitation and erosion rate explain 94% of the variance in FPP and that >98% of Earth’s land surface has conditions that promote anisovolumetric weathering in granitic saprolite. Our work indicates that anisovolumetric weathering is the norm, rather than the exception, and highlights the importance of climate and erosion as drivers of subsurface physical weathering. 
    more » « less