skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012391

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider feedback stabilization for parabolic variational inequalities of obstacle type with time and space depending reaction and convection coefficients and show exponential stabilization to nonstationary trajectories. Based on a Moreau–Yosida approximation, a feedback operator is established using a finite (and uniform in the approximation index) number of actuators leading to exponential decay of given rate of the state variable. Several numerical examples are presented addressing smooth and nonsmooth obstacle functions. 
    more » « less
  2. Abstract We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for general data and locally Hadamard differentiable obstacle mappings, thereby extending in particular the results of our previous work which provided the first differentiability result for QVIs in infinite dimensions. Optimal control problems with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems, thus supplying among the first such results in this area. 
    more » « less