Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.more » « less
-
Abstract The structure of the critical zone (CZ) is a product of feedbacks among hydrologic, climatic, biotic, and chemical processes. Past research within snow‐dominated systems has shown that aspect‐dependent solar radiation inputs can produce striking differences in vegetation composition, topography, and soil depth between opposing hillslopes. However, far fewer studies have evaluated the role of microclimates on CZ development within rain‐dominated systems, especially below the soil and into weathered bedrock. To address this need, we characterized the CZ of a north‐facing and south‐facing slope within a first‐order headwater catchment located in central coast California. We combined terrain analysis of vegetation distribution and topography with soil pit characterization, geophysical surveys and hydrologic measurements between slope‐aspects. We documented denser vegetation and higher shallow soil moisture on north facing slopes, which matched previously documented observations in snow‐dominated sites. However, average topographic gradients were 24° and saprolite thickness was approximately 6 m across both hillslopes, which did not match common observations from the literature that showed widespread asymmetry in snow‐dominated systems. These results suggest that dominant processes for CZ evolution are not necessarily transferable across regions. Thus, there is a continued need to expand CZ research, especially in rain‐dominated and water‐limited systems. Here, we present two non‐exclusive mechanistic hypotheses that may explain these unexpected similarities in slope and saprolite thickness between hillslopes with opposing aspects.more » « less
-
Abstract The critical zone (CZ) is the region of the Earth’s surface that extends from the bottom of the weathered bedrock to the tree canopy and is important because of its ability to store water and support ecosystems. A growing number of studies use active source shallow seismic refraction to explore and define the size and structure of the CZ across landscapes. However, measurement uncertainty and model resolution at depth are generally not evaluated, which makes the identification and interpretation of CZ features inconclusive. To reliably resolve seismic velocity with depth, we implement a Transdimensional Hierarchical Bayesian (THB) framework with reversible‐jump Markov Chain Monte Carlo to generate samples from the posterior distribution of velocity structures. We also perform 2D synthetic tests to explore how well THB traveltime inversion can resolve different subsurface velocity structures. We find that THB recovers both sharp changes in velocity as well as gradual velocity increases with depth. Furthermore, we explore the velocity structure in a series of ridge‐valley systems in northern California. The posterior velocity model shows an increasing thickness of low velocity material from channels to ridgetops along a transect parallel to bedding strike, implying a deeper weathering zone below ridgetops and hillslopes than below channels. The THB method enhances the ability to reliably image CZ structure, and the model uncertainty estimates it yields provides an objective way to interpret deep CZ structure. The method can be applied across other near‐surface studies, especially in the presence of significant surface topography.more » « less
An official website of the United States government
