skip to main content


Search for: All records

Award ID contains: 2012634

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We optimize a numerical time‐stabilization routine for a class of phase‐field crystal (PFC) models of solidification. By numerical experiments, we demonstrate that our simple approach can improve the accuracy of underlying time integration schemes by a few orders of magnitude. We investigate different time integration schemes. Moreover, as a prototypical example for applications, we extend our numerical approach to a PFC model of solidification with an explicit temperature coupling.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    We present a phase-field crystal model for solidification that accounts for thermal transport and a temperature-dependent lattice parameter. Elasticity effects are characterized through the continuous elastic field computed from the microscopic density field. We showcase the model capabilities via selected numerical investigations which focus on the prototypical growth of two-dimensional crystals from the melt, resulting in faceted shapes and dendrites. This work sets the grounds for a comprehensive mesoscale model of solidification including thermal expansion.

     
    more » « less
  3. Free, publicly-accessible full text available October 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024