skip to main content


Search for: All records

Award ID contains: 2012922

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    The yields, mean transverse momenta, and flow of K *0 , ρ 0 , Λ(1520) resonances provide an evidence of a late stage hadronic rescattering in ultrarelativistic central heavy ion collisions [1]. Using hydrodynamic + hadronic afterburner simulations of Pb+Pb collisions at 5.02 TeV we achieve a reasonable description of resonance yields and spectra as a function of collision centrality. We demonstrate that the measurements of Λ(1520)’s mean transverse momentum allow to constrain the unknown branching ratios of Σ* → Λ(1520)π decays. Hadronic dynamics leads to an enhanced ∆(1232) production in central collisions. 
    more » « less
  2. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    Recent theory progress in (3+1)D dynamical descriptions of relativistic nuclear collisions at finite baryon density are reviewed. Heavy-ion collisions at different collision energies produce strongly coupled nuclear matter to probe the phase structure of Quantum Chromodynamics (QCD). Dynamical frameworks serve as a quantitative tool to study properties of hot QCD matter and map collisions to the QCD phase diagram. Outstanding challenges are highlighted when confronting theoretical models with the current and forthcoming experimental measurements from the RHIC beam energy scan program. 
    more » « less
  3. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    Utilizing viscous hydrodynamic simulations of heavy-ion collisions, we study the behavior of cumulants of (net-)(anti)proton number distributions at RHIC beam energy scan energies, incorporating non-critical contributions like baryon conservation and excluded volume. The experimental data on net-proton cumulants at √ S NN > 20 GeV are consistent with simultaneous effects of global baryon conservation and repulsive interactions in baryon sector, whereas the data at lower collision energies show possible indications for sizable attractive interactions among baryons. We discuss the behavior of factorial cumulants in addition to the ordinary cumulants, and also address the quantitative difference between proton and baryon number cumulants. 
    more » « less