skip to main content

Search for: All records

Award ID contains: 2013199

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Free, publicly-accessible full text available March 18, 2023
  3. Abstract A rotation curve inequality that holds for spherically symmetric mass distributions is derived, and tested against the SPARC galaxy rotation curves dataset. We identify several Galaxies, e.g. NGC7793 and UGC11557, which are candidates for hosting non-spherical dark matter structures that could be detected by more precise measurements.
    Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. null (Ed.)
  6. We present new results on the thermal production yield of a hypothetical state made of six quarks [Formula: see text] assuming its production in heavy-ion collisions at the CERN Large Hadron Collider (LHC). A state with this quark content and mass low enough to be stable against decay in timescales of the order of the age of the Universe has been hypothesized by one of us (G. Farrar) and has been discussed as a possible dark matter candidate. In this work, we address for the first time the thermal production rate that can be expected for this state in heavy-ion collisions at colliders. For this estimate we use a thermal model which has been shown to describe accurately the production of hadrons and nuclei in heavy-ion collisions at LHC energy. This estimate is of great relevance for sexaquark searches at colliders as well as for its consideration as a dark matter candidate and for the composition of neutron stars.
  7. null (Ed.)