skip to main content


Search for: All records

Award ID contains: 2013873

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We discuss Dirac neutrinos whose right-handed component ν R has new interac­tions that may lead to a measurable contribution to the effective number of relativistic neutrino species N eff . We aim at a model-independent and comprehensive study on a variety of possibilities. Processes for ν R -genesis from decay or scattering of thermal species, with spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and analytically the contribution of ν R to N eff primarily in the freeze-in regime, since the freeze-out regime has been studied before. While our approximate analytical results apply only to freeze-in, our numerical calculations work for freeze-out as well, including the transition between the two regimes. Using current and future constraints on N eff , we obtain limits and sensitivities of CMB experiments on masses and couplings of the new interactions. As a by-product, we obtain the contribution of Higgs-neutrino interactions, Δ N eff SM ≃ 7.5 × 10 -12 , assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism. 
    more » « less