Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A central issue lying at the heart of online reinforcement learning (RL) is data efficiency. While a number of recent works achieved asymptotically minimal regret in online RL, the optimality of these results is only guaranteed in a “large-sample” regime, imposing enormous burn-in cost in order for their algorithms to operate optimally. How to achieve minimax-optimal regret without incurring any burn-in cost has been an open problem in RL theory. We settle this problem for finite-horizon inhomogeneous Markov decision processes. Specifically, we prove that a modified version ofMVP(Monotonic Value Propagation), an optimistic model-based algorithm proposed by Zhang et al. [82], achieves a regret on the order of (modulo log factors)\begin{equation*} \min \big \lbrace \sqrt {SAH^3K}, \,HK \big \rbrace,\end{equation*}whereSis the number of states,Ais the number of actions,His the horizon length, andKis the total number of episodes. This regret matches the minimax lower bound for the entire range of sample sizeK≥ 1, essentially eliminating any burn-in requirement. It also translates to a PAC sample complexity (i.e., the number of episodes needed to yield ε-accuracy) of\(\frac{SAH^3}{\varepsilon ^2} \)up to log factor, which is minimax-optimal for the full ε-range. Further, we extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances. The key technical innovation lies in a novel analysis paradigm (based on a new concept called “profiles”) to decouple complicated statistical dependency across the sample trajectories — a long-standing challenge facing the analysis of online RL in the sample-starved regime.more » « less
An official website of the United States government

Full Text Available