skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2015390

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Statistical prediction plays an important role in many decision processes, such as university budgeting (depending on the number of students who will enroll), capital budgeting (depending on the remaining lifetime of a fleet of systems), the needed amount of cash reserves for warranty expenses (depending on the number of warranty returns), and whether a product recall is needed (depending on the number of potentially life-threatening product failures). In statistical inference, likelihood ratios have a long history of use for decision making relating to model parameters (e.g., in evidence-based medicine and forensics). We propose a general prediction method, based on a likelihood ratio (LR) involving both the data and a future random variable. This general approach provides a way to identify prediction interval methods that have excellent statistical properties. For example, if a prediction method can be based on a pivotal quantity, our LR-based method will often identify it. For applications where a pivotal quantity does not exist, the LR-based method provides a procedure with good coverage properties for both continuous or discrete-data prediction applications. 
    more » « less
  2. null (Ed.)