Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many ways to build an angler: diversity of feeding morphologies in a deep-sea evolutionary radiationAlmost nothing is known about the diets of bathypelagic fishes, but functional morphology can provide useful tools to infer ecology. Here we quantify variation in jaw and tooth morphologies across anglerfishes (Lophiiformes), a clade spanning shallow and deep-sea habitats. Deep-sea ceratioid anglerfishes are considered dietary generalists due to the necessity of opportunistic feeding in the food-limited bathypelagic zone. We found unexpected diversity in the trophic morphologies of ceratioid anglerfishes. Ceratioid jaws span a functional continuum ranging from species with numerous stout teeth, a relatively slow but forceful bite, and high jaw protrusibility at one end (characteristics shared with benthic anglerfishes) to species with long fang-like teeth, a fast but weak bite and low jaw protrusibility at the other end (including a unique ‘wolftrap’ phenotype). Our finding of high morphological diversity seems to be at odds with ecological generality, reminiscent of Liem's paradox (morphological specialization allowing organisms to have broader niches). Another possible explanation is that diverse ceratioid functional morphologies may yield similar trophic success (many-to-one mapping of morphology to diet), allowing diversity to arise through neutral evolutionary processes. Our results highlight that there are many ways to be a successful predator in the deep sea.more » « less
-
Molecular studies have shown that Neotropical fishes of the order Characiformes have undergone two independent events of cave colonization. Among these fishes are the Mexican blind cavefish ( Astyanax mexicanus ), a well-studied model system for cave adaptation, and the lesser-known Brazilian blind characid ( Stygichthys typhlops ). Although various genomic and transcriptomic approaches have been used to identify genes responsible for cave adaptation in A. mexicanus , these genetic factors have not been explored in an evolutionary comparative framework in cave-adapted characiforms. To address this gap, we assembled a de novo transcriptome for the Brazilian blind characid, identifying 27,845 assembled unigenes, of which 22,580 were assigned as putative one-to-one orthologs to the Mexican cavefish. We then used the package RELAX to analyze 789 genes in cavefishes, identifying 311 genes under intensified or relaxed selection. Our analysis revealed 26 genes with signatures of convergent, relaxed selection linked to vision, circadian cycles, pigmentation, and hematopoiesis processes. Additionally, we conducted differential gene expression analyzes between the snout region and a control tissue sample (muscle), identifying 96 differentially expressed genes associated with cell-surface-bound and calcium-binding proteins. Our study offers insights into the genetic mechanisms underlying cave adaptation in characiform fishes, particularly the Brazilian blind characid. Moreover, our transcriptome dataset and list of genes under convergent, relaxed, and intensified selection serve as a valuable resource for future functional studies of genes involved in cave adaptation. Our work highlights the importance of examining genetic adaptations in multiple independent lineages to better understand the evolutionary processes underlying cave adaptation.more » « less
-
Arbeitman, M (Ed.)Abstract High-risk human papillomaviruses (HPVs) 16 and 18 are responsible for more than 70% of cervical cancers and majority of other HPV-associated cancers world-wide. Current treatments for these cancers have limited efficacy, which in turn has resulted in disease recurrence and poor survival rates in advanced disease stages. Hence, there is a significant need for development of novel molecularly-targeted therapeutics. This can only be achieved through improved understanding of disease mechanism. Recently, we developed a Drosophila model of HPV18E6 plus human E3 ubiquitin ligase (hUBE3A) and demonstrated that the E6-induced cellular abnormalities are conserved between humans and flies. Subsequently, we demonstrated that reduced level and activity of IKKβ, a regulator of NF-κB, suppresses the cellular abnormalities induced by E6 oncoprotein and that the interaction of IKKβ and E6 is conserved in human cells. In this study, we performed transcriptomic analysis to identify differentially expressed genes that play a role in IKKβ-mediated suppression of E6-induced defects. Transcriptome analysis identified 215 genes whose expression was altered due to reduced levels of IKKβ. Of these 215 genes, 151 genes showed annotations. These analyses were followed by functional genetic interaction screen using RNAi, overexpression, and mutant fly strains for identified genes. The screen identified several genes including genes involved in Hippo and Toll pathways as well as junctional complexes whose downregulation or upregulation resulted in alterations of E6-induced defects. Subsequently, RT-PCR analysis was performed for validation of altered gene expression level for a few representative genes. Our results indicate an involvement for Hippo and Toll pathways in IKKβ-mediated suppression of E6 + hUBE3A-induced cellular abnormalities. Therefore, this study enhances our understanding of the mechanisms underlying HPV-induced cancer and can potentially lead to identification of novel drug targets for cancers associated with HPV.more » « less
-
Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.more » « less