skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2015618

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract “Supermodeling” climate by allowing different models to assimilate data from one another in run time has been shown to give results superior to those of any one model and superior to any weighted average of model outputs. The only free parameters, connection strengths between corresponding variables in each pair of models, are determined using some form of machine learning. It is demonstrated that supermodeling succeeds because near critical states, interscale interactions are important but unresolved processes cannot be effectively represented diagnostically in any single parameterization scheme. In two examples, a pair of toy quasigeostrophic (QG) channel models of the midlatitudes and a pair of ECHAM5 models of the tropical Pacific atmosphere with a common ocean, supermodels dynamically combine parameterization schemes so as to capture criticality, associated critical structures, and the supporting scale interactions. The QG supermodeling scheme extends a previous configuration in which two such models synchronize with intermodel connections only between medium-scale components of the flow; here the connections are trained against a third “real” model. Intermittent blocking patterns characterize the critical behavior thus obtained, even where such patterns are missing in the constituent models. In the ECHAM-based climate supermodel, the corresponding critical structure is the single ITCZ pattern, a pattern that occurs in neither of the constituent models. For supermodels of both types, power spectra indicate enhanced interscale interactions in frequency or energy ranges of physical interest, in agreement with observed data, and supporting a generalized form of the self-organized criticality hypothesis. Significance StatementIn a “supermodel” of Earth’s climate, alternative models (climate simulations), which differ in the way they represent processes on the smallest scales, are trained to exchange information as they run, adjusting to one another much as weather prediction models adjust to new observations. They form a consensus, capturing atmospheric behaviors that have eluded all the separate models. We demonstrate that simplified supermodels succeed, where no single approach can, by correctly representingcritical phenomenainvolving sudden qualitative transitions, such as occur in El Niño events, that depend on interactions among atmospheric processes on many different scales in space and time. The correct reproduction of critical phenomena is vital both for predicting weather and for projecting the effects of climate change. 
    more » « less
  2. Abstract The modeling of weather and climate has been a success story. The skill of forecasts continues to improve and model biases continue to decrease. Combining the output of multiple models has further improved forecast skill and reduced biases. But are we exploiting the full capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent step forward in the multimodel ensemble approach. Instead of combining model output after the simulations are completed, in a supermodel individual models exchange state information as they run, influencing each other’s behavior. By learning the optimal parameters that determine how models influence each other based on past observations, model errors are reduced at an early stage before they propagate into larger scales and affect other regions and variables. The models synchronize on a common solution that through learning remains closer to the observed evolution. Effectively a new dynamical system has been created, a supermodel, that optimally combines the strengths of the constituent models. The supermodel approach has the potential to rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper we introduce supermodeling, demonstrate its potential in examples of various complexity, and discuss learning strategies. We conclude with a discussion of remaining challenges for a successful application of supermodeling in the context of state-of-the-art models. The supermodeling approach is not limited to the modeling of weather and climate, but can be applied to improve the prediction capabilities of any complex system, for which a set of different models exists. 
    more » « less