skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2015722

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Detection of long wave infrared (LWIR) light at room temperature is a long‐standing challenge due to the low energy of photons. A low‐cost, high‐performance LWIR detector or camera that operates under such conditions is pursued for decades. Currently, all available detectors operate based on amplitude modulation (AM) and are limited in performance by AM noises, including Johnson noise, shot noise, and background fluctuation noise. To address this challenge, a frequency modulation (FM)‐based detection technique is introduced, which offers inherent robustness against different types of AM noises. The FM‐based approach yields an outstanding room temperature noise equivalent power (NEP), response time, and detectivity (D*). This result promises a novel uncooled LWIR detection scheme that is highly sensitive, low‐cost, and can be easily integrated with electronic readout circuitry, without the need for complex hybridization. 
    more » « less