Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A typical strategy to comply with interpass temperature constraints is to increase the interpass dwell time, which can lead to an increase in the total deposition time. This study aims to develop an optimized tool path that ensures interpass temperature compliance and reduces overall deposition time relative to the conventional sequential deposition path during the DED process. To evaluate this, a compact analytic thermal model is used to predict the thermal history during laser-based directed energy deposition (DED-LB/M) hot wire (lateral feeding) of ER100S-G, a welding wire equivalent to high yield steel. A greedy algorithm, integrated with the thermal model, identifies a tool path order that ensures compliance with the interpass requirement of the material while minimizing interpass dwell time and, thus, the total deposition time. The proposed path planning algorithm is validated experimentally with in situ temperature measurements comparing parts fabricated with the baseline (sequential) deposition path to the modified path (resulting from the greedy algorithm). The experimental results of this study demonstrate that the proposed path planning algorithm can reduce the deposition time by 9.2% for parts of dimensions 66 mm × 73 mm × 16.5 mm, comprising 15 layers and a total of 300 beads. Predictions based on the proposed path planning algorithm indicate that additional reductions in deposition time can be achieved for larger parts. Specifically, increasing the (experimentally validated) part dimension perpendicular to the deposition direction by five-times is expected to result in a 40% reduction in deposition time.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available January 18, 2026
- 
            Free, publicly-accessible full text available January 18, 2026
- 
            Laser Hot Wire (LHW) Directed Energy Deposition (DED) Additive Manufacturing (AM) processes are capable of manufacturing parts with a high deposition rate. There is a growing research interest in replacing large cast Nickel Aluminum Bronze (NAB) components using LHW DED processes for maritime applications. Understanding thermomechanical behavior during LHW DED of NAB is a critical step towards the production of high-quality NAB parts with desired performance and properties. In this paper, finite element simulations are first used to predict the thermomechanical time histories during LHW DED of NAB test coupons with an increasing geometric complexity, including single-layer and multilayer depositions. Simulation results are experimentally validated through in situ measurements of temperatures at multiple locations in the substrate as well as displacement at the free end of the substrate during and immediately following the deposition process. The results in this paper demonstrate that the finite element predictions have good agreement with the experimental measurements of both temperature and distortion history. The maximum prediction error for temperature is 5% for single-layer samples and 6% for multilayer samples, while the distortion prediction error is about 12% for single-layer samples and less than 4% for multilayer samples. In addition, this study shows the effectiveness of including a stress relaxation temperature at 500 °C during FE modeling to allow for better prediction of the low cross-layer accumulation of distortion in multilayer deposition of NAB.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
