skip to main content


Search for: All records

Award ID contains: 2016453

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mixtures of Ce‐doped rare‐earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A‐site cations with an equiatomic ratio allows for the stabilization of a single‐crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare‐earth aluminum perovskite oxide (La0.2Lu0.2Y0.2Gd0.2Ce0.2)AlO3and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+and energy transfer to Ce3+with 405 nm emission are observed, which represents the potential for high‐energy conversion. These experimental results also offer the pathway to tunable optical properties of high‐entropy rare‐earth epitaxial perovskite films for a range of applications.

     
    more » « less
  2. Abstract

    Magneto‐optical (MO) coupling incorporates photon‐induced change of magnetic polarization that can be adopted in ultrafast switching, optical isolators, mode convertors, and optical data storage components for advanced optical integrated circuits. However, integrating plasmonic, magnetic, and dielectric properties in one single material system poses challenges since one natural material can hardly possess all these functionalities. Here, co‐deposition of a three‐phase heterostructure composed of a durable conductive nitride matrix with embedded core–shell vertically aligned nanopillars, is demonstrated. The unique coupling between ferromagnetic NiO core and atomically sharp plasmonic Au shell enables strong MO activity out‐of‐plane at room temperature. Further, a template growth process is applied, which significantly enhances the ordering of the nanopillar array. The ordered nanostructure offers two schemes of spin polarization which result in stronger antisymmetry of Kerr rotation. The presented complex hybrid metamaterial platform with strong magnetic and optical anisotropies is promising for tunable and modulated all‐optical‐based nanodevices.

     
    more » « less
  3. Abstract

    The integration of highly luminescent CsPbBr3quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2Br5nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3nanocrystals on CsPb2Br5nanowires is reported first by simply immersing CsPbBr3powder into pure water, CsPbBr3−γ Xγ(X = Cl, I) nanocrystals on CsPb2Br5−γ Xγnanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3powder is first converted to CsPb2Br5microplatelets in water, followed by morphological transformation from CsPb2Br5microplatelets to nanowires, which is a kinetic dissolution–recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2Br5. CsPbBr3nanocrystals are spontaneously formed on CsPb2Br5nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3−γ Xγnanocrystals while CsPb2Br5−γ Xγnanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry–Perot interference modes of the nanowire cavity.

     
    more » « less
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Interface‐type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament‐type (FT) devices for neuromorphic computing because of their uniform, filament‐free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface‐dominated memristive device is demonstrated using a simple Au/Nb‐doped SrTiO3(Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface‐controlled RS, the proposed device shows low device‐to‐device, cell‐to‐cell, and cycle‐to‐cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next‐generation neuromorphic computing.

     
    more » « less
  7. Colloidal Ag particles decorated with Fe 3 O 4 islands can be electrochemically or photochemically activated as inverse catalysts for C(sp 2 )–H heteroarylation. The silver–iron oxide (SIO) particles are reduced into redox-active forms by cathodic charging at mild potentials or by short-term light exposure, and can be reused multiple times by magnetic cycling without further activation. A negative shift in the reduction peak is attributed to an overpotential produced by surface Fe 3 O 4 which separates residual Ag ions or clusters from bulk silver. The catalytic efficiency of SIO is maintained even with acid degradation, which can be countered simply by adding water to the reaction medium. 
    more » « less
  8. Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods. 
    more » « less