Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Access to synchrotron X-ray facilities has become an important aspect for many disciplines in experimental Earth science. This is especially important for studies that rely on probing samples in situ under natural conditions different from the ones found at the surface of the Earth. The non-ambient condition Earth science program at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, offers a variety of tools utilizing the infra-red and hard X-ray spectrum that allow Earth scientists to probe Earth and environmental materials at variable conditions of pressure, stress, temperature, atmospheric composition, and humidity. These facilities are important tools for the user community in that they offer not only considerable capacity (non-ambient condition diffraction) but also complementary (IR spectroscopy, microtomography), and in some cases unique (Laue microdiffraction) instruments. The availability of the ALS’ in situ probes to the Earth science community grows especially critical during the ongoing dark time of the Advanced Photon Source in Chicago, which massively reduces available in situ synchrotron user time in North America.more » « less
-
Abstract The infrared hydroxyl bands and first hydroxyl combination bands of glaucophane are characterized under pressure. In this weakly hydrogen-bonded mineral, the anharmonicity parameter, as determined from the difference between combinations and the fundamentals, is nearly constant with pressure to 15 GPa, indicating that the ambient pressure value of hydroxyl-bond anharmonicity closely reflects its value at high pressures. Given this near-constancy, the Grüneisen parameters of the hydroxyl stretching vibrations of a wide range of minerals, as derived from the pressure dependence of their O–H stretching frequencies, are correlated with the anharmonic parameter of each vibration, as determined from the ambient pressure offset of the summed frequencies of the fundamentaln = 0 to 1 transitions and the frequency of the hydroxyl combination or overtone band corresponding to then = 0 to 2 transition. This correlation is motivated by (1) the anharmonic origin of the Grüneisen parameter; and (2) the grossly similar form of the interatomic potential governing weak- and medium-strength hydrogen bonding in many minerals. This possible correlation provides a means through which the likely pressure-induced hydroxyl mode shifts of phases might be estimated from ambient pressure near-infrared measurements and emphasizes the importance of near-infrared combination/overtone band measurements. In this context, the combination/overtone bands of high-pressure hydrous phases are almost completely uncharacterized, and thus one probe of their anharmonicity has been neglected. Such information directly constrains the nature of hydrogen bonding in these phases, and hence provides possible insights into both their retention of hydrogen and its mobility. Deviations from the anharmonicity-Grüneisen parameter correlation, when observed (as may be the case in prehnite), could provide insights into anomalous effects on the hydroxyl potential well induced by bifurcated H-bonds, pressure-dependent Davydov splitting, or the influence of neighboring cations.more » « less
-
Abstract The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$ GPa with an imposed value of$${K}_{0}^{\prime}= 4$$ for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$ Å3$$,$$ $${K}_{0}=24.8$$ GPa and$${K}_{0}^{\prime}=4.0$$ using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.more » « less
-
Abstract The viscosity of iron alloy liquids is the key for the core dynamo and core‐mantle differentiation of terrestrial bodies. Here we measured the viscosity of Fe‐Ni‐C liquids up to 7 GPa using the floating sphere viscometry method and up to 330 GPa using first‐principles calculations. We found a viscosity increase at ∼3–5 GPa, coincident with a structural transition in the liquids. After the transition, the viscosity reaches ∼14–27 mPa·s, a factor of 2–4 higher than that of Fe and Fe‐S liquids. Our computational results from 5 to 330 GPa also indicate a high viscosity of the Fe‐Ni‐C liquids. For a carbon‐rich core in large terrestrial body, the level of turbulence in the outer core would be lessened approaching the inner core boundary. It is also anticipated that Fe‐Ni‐C liquids would percolate in Earth's deep silicate mantle at a much slower speed than Fe and Fe‐S liquids.more » « less
-
Abstract A comprehensive analysis of experimental data and theoretical simulations on the partial molar volume of water in silicate melt indicates that finite strain theory successfully describes the compression of the H2O component dissolved in silicate melt at high pressures and temperatures. However, because of the high compressibility of the water component, a fourth order equation of state fit is required to accurately simulate experimental results on water's volume in silicate melts at a deep upper mantle, transition zone, and lower mantle pressures. Data from previous shock compression experiments on hydrous minerals in which melting occurs along the Hugoniot are used to provide an experimental constraint on the partial molar volume of water in silicate melt at deep mantle temperatures and pressures. The equation of state of the water component indicates that, depending on elastic averaging technique, the amount of water that could be present in neutrally or negatively buoyant mafic/ultramafic melts above the 410 km seismic discontinuity is upper‐bounded at 5.6 wt%: smaller than previously inferred, and consistent with melt being confined to a narrow depth range above the 410 km discontinuity. If melt is predominantly distributed along grain boundaries in low aspect ratio films, extents of melting as low as 2% could produce observed seismic velocity reductions. The ability of the lowermost mantle to contain negatively buoyant hydrous liquids hinges on the trade‐off between iron content and hydration: at these depths, substantially higher degrees of hydration could be present within partial melts.more » « less
-
Density of Fe‐Ni‐C Liquids at High Pressures and Implications for Liquid Cores of Earth and the MoonAbstract The presence of light elements in the metallic cores of the Earth, the Moon, and other rocky planetary bodies has been widely proposed. Carbon is among the top candidates in light of its high cosmic abundance, siderophile nature, and ubiquity in iron meteorites. It is, however, still controversial whether carbon‐rich core compositional models can account for the seismic velocity observations within the Earth and lunar cores. Here, we report the density and elasticity of Fe90Ni10‐3 wt.% C and Fe90Ni10‐5 wt.% C liquid alloys using synchrotron‐based X‐ray absorption experiments and first‐principles molecular dynamics simulations. Our results show that alloying of 3 wt.% and 5 wt.% C lowers the density of Fe90Ni10liquid by ∼2.9–3.1% at 2 GPa, and ∼3.4–3.6% at 9 GPa. More intriguingly, our experiments and simulations both demonstrate that the bulk moduli of the Fe‐Ni‐C liquids are similar to or slightly higher than those of Fe‐Ni liquids. Thus, the calculated compressional velocities (vp) of Fe‐Ni‐C liquids are higher than that of pure Fe‐Ni alloy, promoting carbon as a possible candidate to explain the elevatedvpin the Earth's outer core. However, the values and slopes of both density andvpof the studied two Fe‐Ni‐C liquids do not match the outer core seismic models, suggesting that carbon may not be the sole principal light element in Earth's outer core. The highvpof Fe‐Ni‐C liquids does not match the presumptivevpof the lunar outer core well, indicating that carbon is less likely to be its dominant light element.more » « less
-
The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (𝐾′) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as 𝛽a : 𝛽b : 𝛽c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremolite’s notable metastability range hinges on the calcium cation’s bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth.more » « less
An official website of the United States government
