skip to main content

Search for: All records

Award ID contains: 2017870

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Satellite‐derived sun‐induced chlorophyll fluorescence (SIF) has been increasingly used for estimating gross primary production (GPP). However, the relationship between SIF and GPP has not been well defined, impeding the translation of satellite observed SIF to GPP. Previous studies have generally assumed a linear relationship between SIF and GPP at daily and longer time scales, but support for this assumption is lacking. Here, we used the GPP/SIF ratio to investigate seasonal variations in the relationship between SIF and GPP over the Northern Hemisphere (NH). Based on multiple SIF products and MODIS and FLUXCOM GPP data, we found strong seasonal hump‐shaped patterns for the GPP/SIF ratio over northern latitudes, with higher values in the summer than in the spring or autumn. This hump‐shaped GPP/SIF seasonal variation was confirmed by examining different SIF products and was evident for most vegetation types except evergreen broadleaf forests. The seasonal amplitude of the GPP/SIF ratio decreased from the boreal/arctic region to drylands and the tropics. For most of the NH, the lowest GPP/SIF values occurred in October or September, while the maximum GPP/SIF values were evident in June and July. The most pronounced seasonal amplitude of GPP/SIF occurred in intermediate temperature and precipitation ranges. GPP/SIF was positively related to temperature in the early and late parts of the growing season, but not during the peak growing months. These shifting relationships between temperature and GPP/SIF across different months appeared to play a key role in the seasonal dynamics of GPP/SIF. Several mechanisms may explain the patterns we observed, and future research encompassing a broad range of climate and vegetation settings is needed to improve our understanding of the spatial and temporal relationships between SIF and GPP. Nonetheless, the strong seasonal variation in GPP/SIF we identified highlights the importance of incorporating this behavior into SIF‐based GPP estimations.

    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Geostationary satellite reveals the asymmetrical impact of heatwaves on plant diurnal photosynthesis at the continental scale. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract Historically, humans have cleared many forests for agriculture. While this substantially reduced ecosystem carbon storage, the impacts of these land cover changes on terrestrial gross primary productivity (GPP) have not been adequately resolved yet. Here, we combine high-resolution datasets of satellite-derived GPP and environmental predictor variables to estimate the potential GPP of forests, grasslands, and croplands around the globe. With a mean GPP of 2.0 kg C m −2  yr −1 forests represent the most productive land cover on two thirds of the total area suitable for any of these land cover types, while grasslands and croplands on average reach 1.5 and 1.8 kg C m −2  yr −1 , respectively. Combining our potential GPP maps with a historical land-use reconstruction indicates a 4.4% reduction in global GPP from agricultural expansion. This land-use-induced GPP reduction is amplified in some future scenarios as a result of ongoing deforestation (e.g., the large-scale bioenergy scenario SSP4-3.4) but partly reversed in other scenarios (e.g., the sustainability scenario SSP1-1.9) due to agricultural abandonment. Comparing our results to simulations from state-of-the-art Earth System Models, we find that all investigated models deviate substantially from our estimates and from each other. Our maps could be used as a benchmark to reduce this inconsistency, thereby improving projections of land-based climate mitigation potentials. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)