skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2018215

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be leveraged to advance fungal conservation efforts. We present several examples of past and ongoing CS‐based projects to record and monitor fungal diversity. These include projects that are part of broad collecting schemes, those that provide participants with targeted sampling methods, and those whereby participants collect environmental samples from which fungi can be obtained. We also examine challenges and solutions for how such projects can capture fungal diversity, estimate species absences, broaden participation, improve data curation, and translate resulting data into actionable conservation measures. Finally, we close the paper with a call for professional mycologists to engage with amateurs and local communities, presenting a framework to determine whether a given project would likely benefit from participation by citizen scientists. 
    more » « less
  2. Ascomycota, the most speciose phylum of fungi, is a complex entity, comprising three diversesubphyla: Pezizomycotina, Saccharomycotina, and Taphrinomycotina. The largest and most diversesubphylum, Pezizomycotina, is a rich tapestry of 16 classes and 171 orders. Saccharomycotina, thesecond largest subphylum, is a diverse collection of seven classes and 12 orders, whileTaphrinomycotina, the smallest, is a unique assembly of six classes and six orders. Over the pastdecade, numerous taxonomic studies have focused on the generic, family, and class classifications ofAscomycota. These efforts, well-documented across various databases, are crucial for acomprehensive understanding of the classification. However, the study of taxonomy at the ordinallevel, a crucial tier in the taxonomic hierarchy, has been largely overlooked. In a global collaborationwith mycologists and lichenologists, this study presents the first comprehensive information on theorders within Pezizomycotina and Taphrinomycotina. The recent taxonomic classification ofSaccharomycotina has led to the exclusion of this subphylum from the present study, as an immediaterevision is not necessary. Each order is thoroughly discussed, highlighting its historical significance,current status, key identification characteristics, evolutionary relationships, ecological and economicroles, future recommendations, and updated family-level classification. Teaching diagrams for thelife cycles of several orders, viz. Asterinales, Helotiales, Hypocreales, Laboulbeniales, Meliolales,Mycosphaerellales, Ophiostomatales, Pezizales, Pleosporales, Phyllachorales, Rhytismatales,Sordariales, Venturiales, Xylariales (Pezizomycotina) and Pneumocystidales,Schizosaccharomycetales and Taphrinales (Taphrinomycotina) are provided. Each diagram is explained with a representative genus/genera of their sexual and asexual cycles of each order. WithinPezizomycotina, Dothideomycetes contains the highest number of orders, with 57, followed bySordariomycetes (52 orders), Lecanoromycetes (21 orders), Eurotiomycetes and Leotiomycetes (12orders each), Laboulbeniomycetes (3 orders), and Arthoniomycetes and Xylonomycetes (2 orderseach). Candelariomycetes, Coniocybomycetes, Geoglossomycetes, Lichinomycetes, Orbiliomycetes,Pezizomycetes, Sareomycetes, and Xylobotryomycetes each contain a single order, whileThelocarpales and Vezdaeales are treated as incertae sedis within Pezizomycotina. Notably, theclasses Candelariomycetes, Coniocybomycetes, Geoglossomycetes, Sareomycetes, andXylonomycetes, all recently grouped under Lichinomycetes, are treated as separate classes based onphylogenetic analysis and current literature. Within Lecanoromycetes, the synonymization ofSporastatiales with Rhizocarpales and Sarrameanales with Schaereriales is not supported in thephylogenetic analysis. These orders are retained separately, and the justifications are provided undereach section as well as in the discussion. Within Leotiomycetes, the order Medeolariales, which wasonce considered part of Helotiales, is treated as a distinct order based on phylogenetic evidence. Theclassification of Medeolariales may change as more data becomes available from different generegions. Lahmiales (Leotiomycetes) is not included in the phylogenetic analysis due to a lack ofmolecular data. Sareomycetes and Xylonomycetes are treated as separate classes. Spathulosporamixed with Lulworthiales and the inclusion of Spathulosporales within Lulworthiomycetidae issupported and extant molecular sampling is important to resolve the phylogenetic boundaries ofmembers of this subclass. The majority of the classes of Pezizomycotina and Taphrinomycotinaformed monophyletic clades in the phylogenetic analysis conducted based on SSU, LSU, 5.8S, TEFand RPB2 sequence data. However, Arthoniomycetes nested with the basal lineage ofDothideomycetes and formed a monophyletic clade also known as the superclass, Dothideomyceta.In Taphrinomycotina, a single order is accepted within each class. 
    more » « less
    Free, publicly-accessible full text available May 18, 2026
  3. Free, publicly-accessible full text available November 1, 2025
  4. Species of the genus Phaeohelotium ( Leotiomycetes : Helotiaceae ) are cup fungi that grow on decaying wood, leaves, litter, and directly on soil. Northern Hemisphere species are primarily found on litter and wood, whereas in the Southern Hemisphere the genus includes a mix of saprotrophs as well as taxa that grow on soil in association with ectomycorrhizal trees. The diversity of this genus has not been fully explored in southern South America. Here we describe two species from Chile, Phaeohelotium maiusaurantium sp. nov . and Ph. pallidum sp. nov ., found on soil in Patagonian Nothofagaceae -dominated forests. We present macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses. The two new species are placed in Phaeohelotium with high support in our 15-locus phylogeny as well as phylogenetic reconstructions based on the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene. Our ITS phylogeny places both Ph. maiusaurantium and Ph. pallidum in a well-supported subclade that includes ectomycorrhizal root tip samples from Australasia. Similar species can be separated from these new taxa based on morphological characteristics, biogeography, substrate, and sequence data. In addition, two unnamed species from Chilean Nothofagaceae forests ( Phaeohelotium sp. 1 and Phaeohelotium sp. 2) are documented from scant collections and sequence data and await description until more material becomes available. 
    more » « less