skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2018678

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Metal‐containing polymers represent an ever‐expanding frontier of material science. Of the numerous biocompatible ligands used to create a metallopolymer, piperazine‐containing polymers are still in their early development, even though piperazine is a common functional group in drug design and bioengineering scaffolding elements. We report the first synthesis and characterization (with NMR, IR, GPC, UV–vis spectroscopy, and thermal analysis) of two thermoplastic poly(alkyl piperazine succinate) diols with either propyl or hexyl alkane chains bridging the piperazines. These polyester diols were then chain extended with hexamethylene diisocyanate to create highly amorphous polyester urethane thermoplastic polymers. Ru(III) or Fe(III) was then successfully coordinated with these polymers, with approximately 30% of the bulk metallopolymer product becoming 250x the molecular weight of the non‐metal containing polymers. However, coordination of Fe(III), and to a lesser extent Ru(III), to these polypiperazines accelerated the hydrolysis of the polyester linkage in water over 15 days. Thus, these novel polymers are highly biodegradable with Fe(III) metallopolymers hydrolyzing faster than Ru(III) metallopolymers and poly(propyl piperazine succinate) polymers hydrolyzing faster than poly(hexyl piperazine succinate) polymers. 
    more » « less