skip to main content


Search for: All records

Award ID contains: 2019046

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Solid‐state nuclear magnetic resonance (ssNMR) measurements of intact cell walls and cellular samples often generate spectra that are difficult to interpret due to the presence of many coexisting glycans and the structural polymorphism observed in native conditions. To overcome this analytical challenge, we present a statistical approach for analyzing carbohydrate signals using high‐resolution ssNMR data indexed in a carbohydrate database. We generate simulated spectra to demonstrate the chemical shift dispersion and compare this with experimental data to facilitate the identification of important fungal and plant polysaccharides, such as chitin and glucans in fungi and cellulose, hemicellulose, and pectic polymers in plants. We also demonstrate that chemically distinct carbohydrates from different organisms may produce almost identical signals, highlighting the need for high‐resolution spectra and validation of resonance assignments. Our study provides a means to differentiate the characteristic signals of major carbohydrates and allows us to summarize currently undetected polysaccharides in plants and fungi, which may inspire future investigations.

     
    more » « less
  2. Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit. 
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  3. Current commercial batteries are mainly metal based, with metal elements in charge carriers and/or electrode materials, which poses potential economic and environmental concerns due to the heavy use of nonrenewable metals. Thus, metal-free batteries present a unique opportunity as sustainable energy storage devices, though the relevant research is still in its infancy. Herein, we present an all-organic metal-free NH 4 + ion full battery that can operate at a low temperature of 0 °C, by using polypyrrole (PPy) as the cathode, polyaniline (PANI) as the anode, and 19 m ammonium acetate aqueous solution as electrolyte. For the first time, PPy is demonstrated as a high-capacity host material for both NH 4 + and K + storage, when cycled in water in salt electrolytes (WiSEs). When tested in a three-electrode cell containing 25 m NH 4 CH 3 COO electrolyte, PPy exhibits an impressive capacity of 125 mA h g −1 at a specific current of 1 A g −1 and retains 43.61 mA h g −1 at 25 A g −1 . Additionally, a full battery is assembled using the PPy cathode and PANI anode coupled with 19 m NH 4 CH 3 COO WiSE. This battery is found to deliver a capacity of 78.405 mA h g −1 at 25 °C and 49.083 mA h g −1 at 0 °C with a capacity retention of 71.83% after 200 cycles, demonstrating its potential for operations at low temperatures. Additionally, the physiochemical properties of NH 4 + -based WiSEs are examined by Raman and nuclear magnetic resonance (NMR) spectroscopies, to explore their electrochemical behaviors and the fundamental effect of salt concentration on the electrolyte characteristics. This study presents the first non-metal battery with potential for low-temperature applications and opens the door to future metal-free electronics that would generate long-term benefits to the environment. 
    more » « less
  4. Abstract Acinetobacter baumannii is a Gram‐negative bacteria associated with drug resistance and infection in healthcare settings. An understanding of both the biological roles and antigenicity of surface molecules of this organism may provide an important step in the prevention and treatment of infection through vaccination or the development of monoclonal antibodies. With this in mind, we have performed the multistep synthesis of a conjugation‐ready pentasaccharide O ‐glycan from A. baumannii with a longest linear synthetic sequence of 19 steps. This target is particularly relevant due to its role in both fitness and virulence across an apparently broad range of clinically relevant strains. Synthetic challenges include formulating an effective protecting group strategy as well as the installation of a particularly difficult glycosidic linkage between the anomeric position of a 2,3‐diacetamido‐2,3‐dideoxy‐D‐glucuronic acid and the 4‐position of D‐galactose. 
    more » « less