skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2019355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ultrafast organisms exemplify how biological systems manipulate and control energy to generate spectacularly diverse movements. Across the tree of life, repeateduse, ultrafastmovements are driven by springs and controlled by opposing, latch-like forces. We focus on the biomechanical processes that sequentially reduce the duration of each energetic event to yield intense mechanical power density - often external to the organism to reduce self-damage.We leverage a new model system of young, transparent mantis shrimp (Stomatopoda) to quantify the timing and dynamics of muscle contraction, storage of elastic potential energy, latch engagement and release, and the levers and linkages that transform elastic potential to kinetic energy of their ultrafast strikes. We examine how the convergence of physical limits and inherent evolutionary integration of biomechanical structures yield generalizable features of energy storage and energy delivery, such that these mechanisms occur exclusively in small systems.While ultrafast organisms have historically been invisibly fast to science, today’s technology and new model systems have unveiled effective experimental approaches to quantifying energetic control and manipulation in these intriguing biomechanical systems. 
    more » « less
  2. Estimating stomatopod species diversity using morphology alone has long been difficult; though over 450 species have been described, new species are still being discovered regularly despite the cryptic behaviors of adults. However, the larvae of stomatopods are more easily obtained due to their pelagic habitat, and have been the focus of recent studies of diversity. Studies of morphological diversity describe both conserved and divergent traits in larval stomatopods, but generally cannot be linked to a particular species. Conversely, genetic studies of stomatopod larvae using DNA barcoding can be used to estimate species diversity, but are generally not linked to known species by analyses of morphological characters. Here we combine these two approaches, larval morphology and genetics, to estimate stomatopod species diversity in the Hawaiian Islands. Over 22 operational taxonomic units (OTUs) were identified genetically, corresponding to 20 characterized morphological types. Species from three major superfamilies of stomatopod were identified: Squilloidea (4 OTUs, 3 morphotypes), Gonodactyloidea (9, 8), and Lysiosquilloidea (6, 7). Among these, lysiosquilloids were more diverse based on larval morphotypes and OTUs as compared to previously documented Hawaiian species (3), while squilloids had a lower diversity of species represented by collected larvae as compared to the seven species previously documented. Two OTUs / morphotypes could not be identified to superfamily as their molecular and morphological features did not closely match any available information, suggesting they belong to poorly sampled superfamilies. The pseudosquillid, Pseudosquillana richeri, was discovered for the first time from Hawaiʻi. This study contributes an updated estimate for Hawaiian stomatopod diversity for a total of 24 documented species, provides references for identification of larval stomatopods across the three major superfamilies, and emphasizes the lack of knowledge of species diversity in more cryptic stomatopod superfamilies, such as Lysiosquilloidea.   
    more » « less