skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2020243

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid development and large body of literature on machine learning potentials (MLPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLPs. This review paper covers a broad range of topics related to MLPs, including (i) central aspects of how and why MLPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLPs, (iv) a practical guide for estimating and understanding the execution speed of MLPs, including guidance for users based on hardware availability, type of MLP used, and prospective simulation size and time, (v) a manual for what MLP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLPs over the next 3-10+ years. 
    more » « less
    Free, publicly-accessible full text available January 13, 2026
  2. Pretraining molecular representations is crucial for drug and material discovery. Recent methods focus on learning representations from geometric structures, effectively capturing 3D position information. Yet, they overlook the rich information in biomedical texts, which detail molecules’ properties and substructures. With this in mind, we set up a data collection effort for 200K pairs of ground-state geometric structures and biomedical texts, resulting in a PubChem3D dataset. Based on this dataset, we propose the GeomCLIP framework to enhance geometric pretraining and understanding by biomedical texts. During pre-training, we design two types of tasks, i.e., multimodal representation alignment and unimodal denoising pretraining, to align the 3D geometric encoder with textual information and, at the same time, preserve its original representation power. Experimental results show the effectiveness of GeomCLIP in various tasks such as molecule property prediction, zero-shot text-molecule retrieval, and 3D molecule captioning. Our code and collected dataset are available at https://github.com/xiaocui3737/GeomCLIP. 
    more » « less
    Free, publicly-accessible full text available December 3, 2025
  3. Generating molecular structures with desired properties is a critical task with broad applications in drug discovery and materials design. We propose 3M-Diffusion, a novel multi-modal molecular graph generation method, to generate diverse, ideally novel molecular structures with desired properties. 3M-Diffusion encodes molecular graphs into a graph latent space which it then aligns with the text space learned by encoder based LLMs from textual descriptions. It then reconstructs the molecular structure and atomic attributes based on the given text descriptions using the molecule decoder. It then learns a probabilistic mapping from the text space to the latent molecular graph space using a diffusion model. The results of our extensive experiments on several datasets demonstrate that 3M-Diffusion can generate high-quality, novel and diverse molecular graphs that semantically match the textual description provided. The code is available on github. 
    more » « less
  4. In many real-world applications, e.g., monitoring of individual health, climate, brain activity, environmental exposures, among others, the data of interest change smoothly over a continuum, e.g., time, yielding multi-dimensional functional data. Solving clustering, classification, and regression problems with functional data calls for effective methods for learning compact representations of functional data. Existing methods for representation learning from functional data, e.g., functional principal component analysis, are generally limited to learning linear mappings from the data space to the representation space. However, in many applications, such linear methods do not suffice. Hence, we study the novel problem of learning non-linear representations of functional data. Specifically, we propose functional autoencoders, which generalize neural network autoencoders so as to learn non-linear representations of functional data. We derive from first principles, a functional gradient based algorithm for training functional autoencoders. We present results of experiments which demonstrate that the functional autoencoders outperform the state-of-the-art baseline methods. 
    more » « less