skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2020462

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This research attempts to use operational radar and satellite products to identify potential locations of quasi-linear convective system (QLCS) tornadogenesis, which can be difficult to predict. It is hypothesized that deep, discrete updrafts indicate portions of the QLCS capable of producing tornadoes, whereas shallower convection indicates more benign portions of the QLCS. To address this hypothesis, storm reports and storm surveys on 30–31 March 2022, during the second intensive observing period of the 2022 Propagation, Evolution, and Rotation in Linear Storms (PERiLS) field campaign, are used to identify locations of tornadoes within the QLCS. These tornado locations are then compared to representations of upper-tropospheric updrafts, namely, overshooting tops (OTs), which are identified with an algorithm using 1-min-resolution mesoscale sector data fromGOES-16Advanced Baseline Imager infrared brightness temperatures, and radar reflectivity cores aloft, identified with Multi-Radar Multi-Sensor (MRMS) 3D mosaic reflectivity products. Only a fraction (less than 30%) of tornadoes within the QLCS are associated with OTs, though over 85% of tornadoes are located near convective cores as indicated by cores of enhanced reflectivity at 9 km MSL. A numerical simulation of the event is also conducted using the Weather Research and Forecasting (WRF) Model which shows a strong relationship between simulated updraft intensity and reflectivity aloft. Given this apparent support of the hypothesis, the identification of updraft signatures within MRMS and high-resolution geostationary satellite data may ultimately help improve the identification of regions within QLCSs most likely to result in tornadoes. 
    more » « less
  2. Abstract Quasi-linear convective systems (QLCSs) are responsible for approximately a quarter of all tornado events in the U.S., but no field campaigns have focused specifically on collecting data to understand QLCS tornadogenesis. The Propagation, Evolution, and Rotation in Linear System (PERiLS) project was the first observational study of tornadoes associated with QLCSs ever undertaken. Participants were drawn from more than 10 universities, laboratories, and institutes, with over 100 students participating in field activities. The PERiLS field phases spanned two years, late winters and early springs of 2022 and 2023, to increase the probability of intercepting significant tornadic QLCS events in a range of large-scale and local environments. The field phases of PERiLS collected data in nine tornadic and nontornadic QLCSs with unprecedented detail and diversity of measurements. The design and execution of the PERiLS field phase and preliminary data and ongoing analyses are shown. 
    more » « less
  3. {} 
    more » « less
  4. {} 
    more » « less