skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2020624

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A neuromorphic simultaneous localization and mapping (SLAM) system shows potential for more efficient implementation than its traditional counterpart. At the mean time a neuromorphic model of spatial encoding neurons in silicon could provide insights on the functionality and dynamic between each group of cells. Especially when realistic factors including variations and imperfections on the neural movement encoding are presented to challenge the existing hypothetical models for localization. We demonstrate a mixed-mode implementation for spatial encoding neurons including theta cells, egocentric place cells, and the typical allocentric place cells. Together, they form a biologically plausible network that could reproduce the localization functionality of place cells observed in rodents. The system consists of a theta chip with 128 theta cell units and an FPGA implementing 4 networks for egocentric place cells formation that provides the capability for tracking on a 11 by 11 place cell grid. Experimental results validate the robustness of our model when suffering from as much as 18% deviation, induced by parameter variations in analog circuits, from the mathematical model of theta cells. We provide a model for implementing dynamic neuromorphic SLAM systems for dynamic-scale mapping of cluttered environments, even when subject to significant errors in sensory measurements and real-time analog computation. We also suggest a robust approach for the network topology of spatial cells that can mitigate neural non-uniformity and provides a hypothesis for the function of grid cells and the existence of egocentric place cells. 
    more » « less
  2. Abstract Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider. 
    more » « less
  3. Abstract In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility. 
    more » « less
  4. Abstract Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity—that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations. 
    more » « less
  5. Abstract Global optical flow estimation is the foundation stone for obtaining odometry which is used to enable aerial robot navigation. However, such a method has to be of low latency and high robustness whilst also respecting the size, weight, area and power (SWAP) constraints of the robot. A combination of cameras coupled with inertial measurement units (IMUs) has proven to be the best combination in order to obtain such low latency odometry on resource‐constrained aerial robots. Recently, deep learning approaches for visual inertial fusion have gained momentum due to their high accuracy and robustness. However, an equally noteworthy benefit for robotics of these techniques are their inherent scalability (adaptation to different sized aerial robots) and unification (same method works on different sized aerial robots). To this end, we present a deep learning approach called PRGFlow for obtaining global optical flow and then loosely fuse it with an IMU for full 6‐DoF (Degrees of Freedom) relative pose estimation (which is then integrated to obtain odometry). The network is evaluated on the MSCOCO dataset and the dead‐reckoned odometry on multiple real‐flight trajectories without any fine‐tuning or re‐training. A detailed benchmark comparing different network architectures and loss functions to enable scalability is also presented. It is shown that the method outperforms classical feature matching methods by 2 under noisy data. The supplementary material and code can be found athttp://prg.cs.umd.edu/PRGFlow. 
    more » « less
  6. Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Nuria, Jonathan; Scarlett, Oliver; Berkenkamp, Felix (Ed.)
    We propose VecKM, a local point cloud geometry encoder that is descriptive and efficient to compute. VecKM leverages a unique approach by vectorizing a kernel mixture to represent the local point cloud. Such representation's descriptiveness is supported by two theorems that validate its ability to reconstruct and preserve the similarity of the local shape. Unlike existing encoders down-sampling the local point cloud, VecKM constructs the local geometry encoding using all neighboring points, producing a more descriptive encoding. Moreover, VecKM is efficient to compute and scalable to large point cloud inputs: VecKM reduces the memory cost from (n2 + nKd) to (nd + np); and reduces the major runtime cost from computing nK MLPs to n MLPs, where n is the size of the point cloud, K is the neighborhood size, d is the encoding dimension, and p is a marginal factor. The efficiency is due to VecKM's unique factorizable property that eliminates the need of explicitly grouping points into neighbors. In the normal estimation task, VecKM demonstrates not only 100× faster inference speed but also highest accuracy and strongest robustness. In classification and segmentation tasks, integrating VecKM as a preprocessing module achieves consistently better performance than the PointNet, PointNet++, and point transformer baselines, and runs consistently faster by up to 10 times. 
    more » « less
    Free, publicly-accessible full text available January 3, 2026
  7. Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts theoppositeof the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  8. Free, publicly-accessible full text available December 1, 2025
  9. Free, publicly-accessible full text available December 1, 2025
  10. Free, publicly-accessible full text available October 24, 2025