skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2021203

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although the demand for STEM (Science, Technology, Engineering, and Mathematics) personnel continues to raise in the U.S. workforce, it has been revealed that STEM education is not providing the necessary supply. Graduates with a STEM education are below their counterparts internationally. This paper seeks to introduce a new teaching methodology, based on a merger of Project-Based Learning (PBL), Hands-on Learning (HOL), Simulation-Based Learning (SBL), and the Cognitive Apprenticeship (CA) framework, aimed at improving learning in STEM education. The methodology aims to address three of the four main causes for the STEM paradox, namely (i) shortage of graduates with Soft Skills, (ii) lack of qualified technicians, and (iii) untapped pools of talent while increasing students’ self-efficacy. It has been implemented as a case study for the past four years in four courses. Analysis of results has shown that, for all courses, students (i) acquired and increased their domain knowledge, procedural and processed knowledge while solving problems, in given scenarios resulting in their expertise level increasing. These results also showcased an increased their self-efficacy as well as their Soft Skills, especially Higher Order Thinking Skills (HOLS) competency levels. 
    more » « less
  2. The digital revolution resulted in an increase demand for a computer network workforce prepared by universities and colleges. The Computer Network field however, is complex and unpredictable, making it challenging to study and teach yet educators must prepare graduates who understand concepts, have practical network skills as well the necessary Higher Order Thinking Skills. This paper presents a case study utilizing a new methodology based on a merger of Project-Based Learning, Hands-on Learning, Simulation Based Learning, in a Cognitive Apprenticeship framework. It seeks to increase students’ (i) expertise in Computer Network, (ii) self efficacy and (iii) Higher Order Thinking skills competency levels. After 4 years of implementation, analysis of results shows, despite the COVID-19 pandemic, that students (i) acquired and increased their domain knowledge, (ii) acquired procedural and processed knowledge while solving problems, in given scenarios (iii) increased their self-efficacy in Computer Networks and (iv) increased their Higher Order Thinking skills 
    more » « less