Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Freshwater ecosystems and their biota are under increasing pressure from anthropogenic stressors. In response to declining fish stocks, hatchery and stocking programmes are widely implemented as core components of restoration and management strategies, with positive outcomes for some wild populations. Despite this, stocking remains contentious due to potential genetic and ecological risks to wild populations. Monitoring and evaluation of stocking outcomes are critical to ensuring the long‐term sustainability of wild populations, but identification of stocked individuals post‐release remains a key challenge, particularly for mobile species. In this study, we combined otolith (natal origin and age) and genomic data to identify stocked individuals and evaluate the genetic implications of stocking for a culturally and socioeconomically important and mobile freshwater fish, golden perchMacquaria ambigua(family: Percichthyidae), across Australia's Murray–Darling Basin (MDB). We also generated a chromosome‐level genome assembly. Many close kin were detected across the MDB, increasing in prevalence over recent decades and mostly of hatchery origin. Rivers with many close kin were associated with low effective population sizes (Ne< 100). Genetic signatures of stocking varied according to local context, being most pronounced in but not restricted to rivers considered functionally isolated for management purposes. Where fish are stocked into rivers that are part of the connected metapopulation, there is scope to modify current stocking practices to avoid over‐representation of related stocked individuals. Increased focus on the genetic diversity of stocked fish is likely to promote the long‐term persistence of golden perch in the wild.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Blair, Christopher (Ed.)Abstract Squamate reptiles are a highly diverse and intriguing group of tetrapods, offering valuable insights into the evolution of amniotes. The Australian water dragon (Intellagama lesueurii) is a member of the Agamidae and sister to the core mesic Australian endemic radiation (Amphibolurinae). The species is renowned for its urban adaptability and complex social systems. We report a 1.8 Gb chromosome-length genome assembly together with the annotation of 23,675 protein-coding genes. Comparative analysis with other squamate genomes highlights gene family expansions associated with immune function, energetic homeostasis, and wound healing. This reference genome will serve as a valuable resource for studies of evolution and environmental resilience in lizards.more » « less
-
Abstract Phlebotomine sand flies are the vectors of leishmaniasis, a neglected tropical disease. High-quality reference genomes are an important tool for understanding the biology and eco-evolutionary dynamics underpinning disease epidemiology. Previous leishmaniasis vector reference sequences were limited by sequencing technologies available at the time and inadequate for high-resolution genomic inquiry. Here, we present updated reference assemblies of two sand flies,Phlebotomus papatasiandLutzomyia longipalpis. These chromosome-level assemblies were generated using an ultra-low input library protocol, PacBio HiFi long reads, and Hi-C technology. The newP. papatasireference has a final assembly span of 351.6 Mb and contig and scaffold N50s of 926 kb and 111.8 Mb, respectively. The newLu. longipalpisreference has a final assembly span of 147.8 Mb and contig and scaffold N50s of 1.09 Mb and 40.6 Mb, respectively. Benchmarking Universal Single-Copy Orthologue (BUSCO) assessments indicated 94.5% and 95.6% complete single copy insecta orthologs forP. papatasiandLu. longipalpis. These improved assemblies will serve as an invaluable resource for future genomic work on phlebotomine sandflies.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract BackgroundB-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. ResultsUsing live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. ConclusionsOur findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.more » « less
-
Townsend, Jeffrey (Ed.)Abstract Cartilaginous fishes (chondrichthyans: chimeras and elasmobranchs -sharks, skates, and rays) hold a key phylogenetic position to explore the origin and diversifications of jawed vertebrates. Here, we report and integrate reference genomic, transcriptomic, and morphological data in the small-spotted catshark Scyliorhinus canicula to shed light on the evolution of sensory organs. We first characterize general aspects of the catshark genome, confirming the high conservation of genome organization across cartilaginous fishes, and investigate population genomic signatures. Taking advantage of a dense sampling of transcriptomic data, we also identify gene signatures for all major organs, including chondrichthyan specializations, and evaluate expression diversifications between paralogs within major gene families involved in sensory functions. Finally, we combine these data with 3D synchrotron imaging and in situ gene expression analyses to explore chondrichthyan-specific traits and more general evolutionary trends of sensory systems. This approach brings to light, among others, novel markers of the ampullae of Lorenzini electrosensory cells, a duplication hotspot for crystallin genes conserved in jawed vertebrates, and a new metazoan clade of the transient-receptor potential (TRP) family. These resources and results, obtained in an experimentally tractable chondrichthyan model, open new avenues to integrate multiomics analyses for the study of elasmobranchs and jawed vertebrates.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium—an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that theEmx2locus experienced lineage-specific patterns of acceleratedcis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show thatEmx2is a critical upstream regulator of patagium development. Moreover, we identify differentcis-regulatory elements that may be responsible for driving increasedEmx2expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence thatEmx2expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation ofEmx2was altered by distinctcis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.more » « less
-
AbstractIn animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two‐dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course. Under these conditions, we found that the angular threshold conveyed by collision detecting neurons in grasshoppers was sensitive to acceleration whereas the triggering of escape behaviours was less so. In contrast, neurons in goldfish identified through the characteristic features of the escape behaviours they trigger, showed little sensitivity to acceleration. This closely mirrored a broader lack of sensitivity to acceleration of the goldfish escape behaviour. Thus, although the sensory coding of simulated colliding stimuli with non‐zero acceleration probably differs in grasshoppers and goldfish, the triggering of escape behaviours converges towards similar characteristics. Approaching stimuli with non‐zero acceleration may help refine our understanding of neural computations underlying escape behaviours in a broad range of animal species.image Key pointsA companion manuscript showed that two mathematical models of collision‐detecting neurons in grasshoppers and goldfish make distinct predictions for the timing of their responses to simulated objects approaching on a collision course with non‐zero acceleration.Testing these experimental predictions showed that grasshopper neurons are sensitive to acceleration while goldfish neurons are not, in agreement with the distinct models proposed previously in these species using constant velocity approaches.Grasshopper and goldfish escape behaviours occurred after the stimulus reached a fixed angular size insensitive to acceleration, suggesting further downstream processing in grasshopper motor circuits to match what was observed in goldfish.Thus, in spite of different sensory processing in the two species, escape behaviours converge towards similar solutions.The use of object acceleration during approach on a collision course may help better understand the neural computations implemented for collision avoidance in a broad range of species.more » « less
-
Abstract We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year. These year classes (“broods”) emerge dependably every 13 or 17 yr in a given location. Recently, it has become clear that 4-yr early or late emergences of a sizeable portion of a population are an important part of the history of brood formation; however, the biological mechanisms by which they track the passage of time remain a mystery. Using PacBio HiFi reads in conjunction with Hi-C proximity ligation data, we have assembled and annotated the first whole genome for a periodical cicada, an important resource for future phylogenetic and comparative genomic analysis. This also represents the first quality genome assembly and annotation for the Hemipteran superfamily Cicadoidea. With a scaffold N50 of 518.9 Mb and a complete BUSCO score of 96.7%, we are confident that this assembly will serve as a vital resource toward uncovering the genomic basis of periodical cicadas’ long, synchronized life cycles and will provide a robust framework for further investigations into these insects.more » « less
-
Abstract Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF’s RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.more » « less
-
Oleksyk, Taras (Ed.)Abstract The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.more » « less
An official website of the United States government
