skip to main content

Search for: All records

Award ID contains: 2022443

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Social media platforms provide users with various ways of interacting with each other, such as commenting, reacting to posts, sharing content, and uploading pictures. Facebook is one of the most popular platforms, and its users frequently share and reshare posts, including research articles. Moreover, the reactions feature on Facebook allows users to express their feelings towards the content they view, providing valuable data for analysis. This study aims to predict the emotional impact of Facebook posts relating to research articles. We collected data on Facebook posts related to various scientific research domains, including Health Sciences, Social Sciences, Dentistry, Arts, and Humanities. We observed Facebook users’ reactions towards research articles and posts and found that ‘Like’ reactions were the most common. We also noticed that research articles from the Dentistry research domain received a lot of ‘Haha’ reactions. We used machine learning models to predict the sentiment of Facebook posts related to research articles. We used features such as the research article’s title sentiment, abstract sentiment, abstract length, author count, and research domain to build the models. We used five classifiers: Random Forest, Decision Tree, K-Nearest Neighbors, Logistic Regression, and Naïve Bayes. The models were evaluated using accuracy, precision, recall, and F-1 score metrics. The Random Forest classifier was the best model for two- and three-class labels, achieving accuracy measures of 86% and 66%, respectively. We also evaluated the feature importance for the Random Forest model and found that the sentiment of the research article’s title is crucial in predicting the sentiment of the Facebook post. This study has substantial implications for public engagement in science-related messages. The emotional reactions of Facebook users towards research articles and posts can provide valuable insights into public engagement in science, and predicting the emotional impact of Facebook posts related to research articles can help researchers understand how the public perceives scientific research. The findings of the study can aid researchers in effectively communicating their research and engaging the public in scientific discourse. 
    more » « less
    Free, publicly-accessible full text available June 3, 2024
  2. Abstract Purpose Social media users share their ideas, thoughts, and emotions with other users. However, it is not clear how online users would respond to new research outcomes. This study aims to predict the nature of the emotions expressed by Twitter users toward scientific publications. Additionally, we investigate what features of the research articles help in such prediction. Identifying the sentiments of research articles on social media will help scientists gauge a new societal impact of their research articles. Design/methodology/approach Several tools are used for sentiment analysis, so we applied five sentiment analysis tools to check which are suitable for capturing a tweet's sentiment value and decided to use NLTK VADER and TextBlob. We segregated the sentiment value into negative, positive, and neutral. We measure the mean and median of tweets’ sentiment value for research articles with more than one tweet. We next built machine learning models to predict the sentiments of tweets related to scientific publications and investigated the essential features that controlled the prediction models. Findings We found that the most important feature in all the models was the sentiment of the research article title followed by the author count. We observed that the tree-based models performed better than other classification models, with Random Forest achieving 89% accuracy for binary classification and 73% accuracy for three-label classification. Research limitations In this research, we used state-of-the-art sentiment analysis libraries. However, these libraries might vary at times in their sentiment prediction behavior. Tweet sentiment may be influenced by a multitude of circumstances and is not always immediately tied to the paper's details. In the future, we intend to broaden the scope of our research by employing word2vec models. Practical implications Many studies have focused on understanding the impact of science on scientists or how science communicators can improve their outcomes. Research in this area has relied on fewer and more limited measures, such as citations and user studies with small datasets. There is currently a critical need to find novel methods to quantify and evaluate the broader impact of research. This study will help scientists better comprehend the emotional impact of their work. Additionally, the value of understanding the public's interest and reactions helps science communicators identify effective ways to engage with the public and build positive connections between scientific communities and the public. Originality/value This study will extend work on public engagement with science, sociology of science, and computational social science. It will enable researchers to identify areas in which there is a gap between public and expert understanding and provide strategies by which this gap can be bridged. 
    more » « less
  3. Why are some research studies easy to reproduce while others are difficult? Casting doubt on the accuracy of scientific work is not fruitful, especially when an individual researcher cannot reproduce the claims made in the paper. There could be many subjective reasons behind the inability to reproduce a scientific paper. The field of Machine Learning (ML) faces a reproducibility crisis, and surveying a portion of published articles has resulted in a group realization that although sharing code repositories would be appreciable, code bases are not the end all be all for determining the reproducibility of an article. Various parties involved in the publication process have come forward to address the reproducibility crisis and solutions such as badging articles as reproducible, reproducibility checklists at conferences (NeurIPS, ICML, ICLR, etc.), and sharing artifacts on OpenReview come across as promising solutions to the core problem. The breadth of literature on reproducibility focuses on measures required to avoid ir-reproducibility, and there is not much research into the effort behind reproducing these articles. In this paper, we investigate the factors that contribute to the easiness and difficulty of reproducing previously published studies and report on the foundational framework to quantify effort of reproducibility. 
    more » « less
    Free, publicly-accessible full text available October 3, 2024
  4. Computational notebooks promote exploration by structuring code, output, and explanatory text, into cells. The input code and rich outputs help users iteratively investigate ideas as they explore or analyze data. The links between these cells–how the cells depend on each other–are important in understanding how analyses have been developed and how the results can be reproduced. Specifically, a code cell that uses a particular identifier depends on the cell where that identifier is defined or mutated. Because notebooks promote fluid editing where cells can be moved and run in any order, cell dependencies are not always clear or easy to follow. We examine different tools that seek to address this problem by extending Jupyter notebooks and evaluate how well they support users in accomplishing tasks that require understanding dependencies. We also evaluate visualization techniques that provide views of the dependencies to help users navigate cell dependencies. 
    more » « less
    Free, publicly-accessible full text available June 18, 2024
  5. Video communication has been rapidly increasing over the past decade, with YouTube providing a medium where users can post, discover, share, and react to videos. There has also been an increase in the number of videos citing research articles, especially since it has become relatively commonplace for academic conferences to require video submissions. However, the relationship between research articles and YouTube videos is not clear, and the purpose of the present paper is to address this issue. We created new datasets using YouTube videos and mentions of research articles on various online platforms. We found that most of the articles cited in the videos are related to medicine and biochemistry. We analyzed these datasets through statistical techniques and visualization, and built machine learning models to predict (1) whether a research article is cited in videos, (2) whether a research article cited in a video achieves a level of popularity, and (3) whether a video citing a research article becomes popular. The best models achieved F1 scores between 80% and 94%. According to our results, research articles mentioned in more tweets and news coverage have a higher chance of receiving video citations. We also found that video views are important for predicting citations and increasing research articles’ popularity and public engagement with science. 
    more » « less
  6. Tirthankar Ghosal, Sergi Blanco-Cuaresma (Ed.)
    Reproducibility is an important feature of science; experiments are retested, and analyses are repeated. Trust in the findings increases when consistent results are achieved. Despite the importance of reproducibility, significant work is often involved in these efforts, and some published findings may not be reproducible due to oversights or errors. In this paper, we examine a myriad of features in scholarly articles published in computer science conferences and journals and test how they correlate with reproducibility. We collected data from three different sources that labeled publications as either reproducible or irreproducible and employed statistical significance tests to identify features of those publications that hold clues about reproducibility. We found the readability of the scholarly article and accessibility of the software artifacts through hyperlinks to be strong signals noticeable amongst reproducible scholarly articles. 
    more » « less
  7. Multiple-view visualization (MV) has been used for visual analytics in various fields (e.g., bioinformatics, cybersecurity, and intelligence analysis). Because each view encodes data from a particular per-spective, analysts often use a set of views laid out in 2D space to link and synthesize information. The difficulty of this process is impacted by the spatial organization of these views. For instance, connecting information from views far from each other can be more challenging than neighboring ones. However, most visual analysis tools currently either fix the positions of the views or completely delegate this organization of views to users (who must manually drag and move views). This either limits user involvement in managing the layout of MV or is overly flexible without much guidance. Then, a key design challenge in MV layout is determining the factors in a spatial organization that impact understanding. To address this, we review a set of MV-based systems and identify considerations for MV layout rooted in two key concerns: perception, which considers how users perceive view relationships, and content, which considers the relationships in the data. We show how these allow us to study and analyze the design of MV layout systematically. 
    more » « less
  8. null (Ed.)