- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jafarian, Yasamin (2)
-
Park, Hyun Soo (2)
-
Carr, Nathan (1)
-
Ceylan, Duygu (1)
-
Engin, Selim (1)
-
Isler, Volkan (1)
-
Jiang, Qingyuan (1)
-
Wang, Tuanfeng Y. (1)
-
Yang, Jimei (1)
-
Zhou, Yi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jafarian, Yasamin; Park, Hyun Soo (, IEEE Transactions on Pattern Analysis and Machine Intelligence)
-
Engin, Selim; Jiang, Qingyuan; Isler, Volkan (, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS))We study the problem of pursuit-evasion for a single pursuer and an evader in polygonal environments where the players have visibility constraints. The pursuer is tasked with catching the evader as quickly as possible while the evader tries to avoid being captured. We formalize this problem as a zero-sum game where the players have private observations and conflicting objectives.One of the challenging aspects of this game is due to limited visibility. When a player, for example, the pursuer does not see the evader, it needs to reason about all possible locations of the evader. This causes an exponential increase in the size of the state space as compared to the arena size. To overcome the challenges associated with large state spaces, we introduce a new learning-based method that compresses the game state and uses it to plan actions for the players. The results indicate that our method outperforms the existing reinforcement learning methods, and performs competitively against the current state-of-the-art randomized strategy in complex environments.more » « less
An official website of the United States government
