skip to main content

Search for: All records

Award ID contains: 2023166

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2025
  2. Free, publicly-accessible full text available May 9, 2025
  3. Free, publicly-accessible full text available May 9, 2025
  4. Free, publicly-accessible full text available May 1, 2025
  5. Free, publicly-accessible full text available December 6, 2024
  6. We consider the problem of minimizing a convex function that is evolving according to unknown and possibly stochastic dynamics, which may depend jointly on time and on the decision variable itself. Such problems abound in the machine learning and signal processing literature, under the names of concept drift, stochastic tracking, and performative prediction. We provide novel non-asymptotic convergence guarantees for stochastic algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability. The efficiency estimates we obtain clearly decouple the contributions of optimization error, gradient noise, and time drift. Notably, we identify a low drift-to-noise regime in which the tracking efficiency of the proximal stochastic gradient method benefits significantly from a step decay schedule. Numerical experiments illustrate our results. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  7. We show that the deviation between the slopes of two convex functions controls the deviation between the functions themselves. This result reveals that the slope—a one dimensional construct—robustly determines convex functions, up to a constant of integration. 
    more » « less
  8. The growing interest in complex decision-making and language modeling problems highlights the importance of sample-efficient learning over very long horizons. This work takes a step in this direction by investigating contextual linear bandits where the current reward depends on at most s prior actions and contexts (not necessarily consecutive), up to a time horizon of h. In order to avoid polynomial dependence on h, we propose new algorithms that leverage sparsity to discover the dependence pattern and arm parameters jointly. We consider both the data-poor (T= h) regimes and derive respective regret upper bounds O(d square-root(sT) +min(q, T) and O( square-root(sdT) ), with sparsity s, feature dimension d, total time horizon T, and q that is adaptive to the reward dependence pattern. Complementing upper bounds, we also show that learning over a single trajectory brings inherent challenges: While the dependence pattern and arm parameters form a rank-1 matrix, circulant matrices are not isometric over rank-1 manifolds and sample complexity indeed benefits from the sparse reward dependence structure. Our results necessitate a new analysis to address long-range temporal dependencies across data and avoid polynomial dependence on the reward horizon h. Specifically, we utilize connections to the restricted isometry property of circulant matrices formed by dependent sub-Gaussian vectors and establish new guarantees that are also of independent interest. 
    more » « less
  9. The problem of controller reduction has a rich history in control theory. Yet, many questions remain open. In particular, there exist very few results on the order reduction of general non-observer based controllers and the subsequent quantification of the closed-loop performance. Recent developments in model-free policy optimization for Linear Quadratic Gaussian (LQG) control have highlighted the importance of this question. In this paper, we first propose a new set of sufficient conditions ensuring that a perturbed controller remains internally stabilizing. Based on this result, we illustrate how to perform order reduction of general (non-observer based) output feedback controllers using balanced truncation and modal truncation. We also provide explicit bounds on the LQG performance of the reduced-order controller. Furthermore, for single-input-single-output (SISO) systems, we introduce a new controller reduction technique by truncating unstable modes. We illustrate our theoretical results with numerical simulations. Our results will serve as valuable tools to design direct policy search algorithms for control problems with partial observations. 
    more » « less
  10. This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games. The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and show a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback. 
    more » « less