- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abib, Nicole (1)
-
Amundson, Jason M. (1)
-
Chant, Robert J (1)
-
Jackson, Rebecca H (1)
-
Jackson, Rebecca H. (1)
-
Kienholz, Christian (1)
-
Motyka, Roman J. (1)
-
Nash, Jonathan D. (1)
-
Sutherland, David A. (1)
-
Wang, Chuning (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In tidewater glacier fjords, subglacial discharge drives a significant mixing mechanism near glacier fronts and drives a strong exchange flow. Numerous studies (Cowton et al., 2015,https://doi.org/10.1002/2014jc010324; Slater et al., 2017,https://doi.org/10.1002/2016gl072374) have utilized a parameterization for buoyant plume theory to force fjord scales systems, but neglect to parameterize the outflowing of the plume away from the glacial wall after it has reached its neutral density. In this study, a new model framework, ROMS‐ICEPLUME, is developed to parameterize the rising and initial outflowing stage of subglacial discharge plumes in the Regional Ocean Modeling System. The coupled model applies a novel parameterization algorithm to prescribe the velocity and vertical extent of the outflowing plume, which reduces numerical instability and improves model performance. The model framework is tested with a quasi‐realistic forcing using observations of a subglacial discharge plume hydrographic surveys collected from a Greenland fjord. We find that the new model framework is able to reproduce the strong outflowing plume and the compensating inflow at depth, with a spatial structure that correlates well with in‐situ observations. On the other hand, the model framework without the new parameterization algorithm fails to capture the outflowing plume structure. Thus, our new framework for parameterizing subglacial discharge plumes is an improvement from previous coupled model frameworks, and is a promising tool toward advancing our understanding of circulation in tidewater glacier fjords.more » « less
-
Jackson, Rebecca H.; Motyka, Roman J.; Amundson, Jason M.; Abib, Nicole; Sutherland, David A.; Nash, Jonathan D.; Kienholz, Christian (, Journal of Geophysical Research: Oceans)Abstract At tidewater glacier termini, ocean‐glacier interactions hinge on two sources of freshwater—submarine melt and subglacial discharge—yet these freshwater fluxes are often unconstrained in their magnitude, seasonality, and relationship. With measurements of ocean velocity, temperature and salinity, fjord budgets can be evaluated to partition the freshwater flux into submarine melt and subglacial discharge. We apply these methods to calculate the freshwater fluxes at LeConte Glacier, Alaska, across a wide range of oceanic and atmospheric conditions during six surveys in 2016–2018. We compare these ocean‐derived fluxes with an estimate of subglacial discharge from a surface mass balance model and with estimates of submarine melt from multibeam sonar and autonomous kayaks, finding relatively good agreement between these independent estimates. Across spring, summer, and fall, the relationship between subglacial discharge and submarine melt follows a scaling law predicted by standard theory (melt ∼ discharge1/3), although the total magnitude of melt is an order of magnitude larger than theoretical estimates. Subglacial discharge is the dominant driver of variability in melt, while the dependence of melt on fjord properties is not discernible. A comparison of oceanic budgets with glacier records indicates that submarine melt removes 33%–49% of the ice flux into the terminus across spring, summer, and fall periods. Thus, melt is a significant component of the glacier's mass balance, and we find that melt correlates with seasonal retreat; however, melt does not appear to directly amplify calving.more » « less
An official website of the United States government
