skip to main content


Search for: All records

Award ID contains: 2023443

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The effects of passing atmospheric cold fronts with different orientations and moving directions on the hydrodynamics of the Wax Lake Delta (WLD) were analyzed by considering the influence of river discharge, cold front moving direction, wind magnitude, and Coriolis effect. The study employs numerical simulations using the Delft-3D model and an analytical model to explore water volume transport, water level variations, water circulation, and particle trajectories during nine cold front events. Results indicate that cold fronts cause a decrease in the average contribution of the water transport through western channels and an increase of that in central and eastern channels. A westerly cold front with an average wind speed of ~12 m/s can increase water transport through eastern channels by about 35%. During the passage of a cold front, the intertidal islands between the main channels and East Bay experience the largest fluctuations in subtidal water levels, which can be attributed to the influence of local wind stress. For example, a westerly cold front can result in a water level variation of approximately 0.45 m over some of the intertidal Islands and 0.65 m in the East Bay. Results also show that the subtidal water circulation in the WLD is correlated with the Wax Lake Outlet (WLO) discharge and wind magnitude. The findings illustrate that when WLO discharge is low, the impact of cold fronts is more pronounced, and cold fronts from the west have a greater impact compared to those from the northwest and north. This study identifies the significance of WLO discharge and Coriolis force by the trajectories of particles in the water column. The results of the simulations indicate that under low WLO discharge (less than 2000 m3/s), the majority of particles are found to exit through Campground Pass instead of Gadwall because of the dominance of Coriolis force. To summarize, this study assesses the impact of cold fronts on the hydrodynamics of the Wax Lake Delta, underscoring the contributions of multiple factors, including the cold front moving direction, river discharge, wind strength, and Coriolis force. 
    more » « less
    Free, publicly-accessible full text available September 29, 2024
  2. Atmospheric cold fronts can periodically generate storm surges and affect sediment transport in the Northern Gulf of Mexico (NGOM). In this paper, we evaluate water circulation spatiotemporal patterns induced by six atmospheric cold front events in the Wax Lake Delta (WLD) in coastal Louisiana using the 3-D hydrodynamic model ECOM-si. Model simulations show that channelized and inter-distributary water flow is significantly impacted by cold fronts. Water volume transport throughout the deltaic channel network is not just constrained to the main channels but also occurs laterally across channels accounting for about a quarter of the total flow. Results show that a significant landward flow occurs across the delta prior to the frontal passage, resulting in a positive storm surge on the coast. The along-channel current velocity dominates while cross-channel water transport occurs at the southwest lobe during the post-frontal stage. Depending on local weather conditions, the cold-front-induced flushing event lasts for 1.7 to 7 days and can flush 32–76% of the total water mass out of the system, a greater range of variability than previous reports. The magnitude of water flushed out of the system is not necessarily dependent on the duration of the frontal events. An energy partitioning analysis shows that the relative importance of subtidal energy (10–45% of the total) and tidal energy (20–70%) varies substantially from station to station and is linked to the weather impact. It is important to note that within the WLD region, the weather-induced subtidal energy (46–66% of the total) is much greater than the diurnal tidal energy (13–25% of the total). The wind associated with cold fronts in winter is the main factor controlling water circulation in the WLD and is a major driver in the spatial configuration of the channel network and delta progradation rates. 
    more » « less