Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spatial voting models are widely used in political science to analyze legislators’ preferences and voting behavior. Traditional models assume that legislators’ ideal points are static across different types of votes. This article extends the Bayesian spatial voting model to incorporate hierarchical Bayesian methods, allowing for the identification of covariates that explain differences in legislators’ ideal points across voting domains. We apply this model to procedural and final passage votes in the U.S. House of Representatives from the 93rd through 113th Congresses. Our findings indicate that legislators in the minority party and those representing moderate constituencies are more likely to exhibit different ideal points between procedural and final passage votes. This research advances the methodology of ideal point estimation by simultaneously scaling ideal points and explaining variation in these points, providing a more nuanced understanding of legislative voting behavior.more » « lessFree, publicly-accessible full text available August 27, 2026
-
Abstract We develop a new class of spatial voting models for binary preference data that can accommodate both monotonic and non-monotonic response functions, and are more flexible than alternative “unfolding” models previously introduced in the literature. We then use these models to estimate revealed preferences for legislators in the U.S. House of Representatives and justices on the U.S. Supreme Court. The results from these applications indicate that the new models provide superior complexity-adjusted performance to various alternatives and that the additional flexibility leads to preferences’ estimates that more closely match the perceived ideological positions of legislators and justices.more » « less
-
Abstract Latent factor models are widely used in the social and behavioural sciences as scaling tools to map discrete multivariate outcomes into low-dimensional, continuous scales. In political science, dynamic versions of classical factor models have been widely used to study the evolution of justices’ preferences in multi-judge courts. In this paper, we discuss a new dynamic factor model that relies on a latent circular space that can accommodate voting behaviours in which justices commonly understood to be on opposite ends of the ideological spectrum vote together on a substantial number of otherwise closely divided opinions. We apply this model to data on nonunanimous decisions made by the US Supreme Court between 1937 and 2021, and show that for most of this period, voting patterns can be better described by a circular latent space.more » « less
-
Abstract Statistical relational learning (SRL) frameworks are effective at defining probabilistic models over complex relational data. They often use weighted first-order logical rules where the weights of the rules govern probabilistic interactions and are usually learned from data. Existing weight learning approaches typically attempt to learn a set of weights that maximizes some function of data likelihood; however, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a taxonomy of search-based weight learning approaches for SRL frameworks that directly optimize weights on a chosen domain performance metric. To effectively apply these search-based approaches, we introduce a novel projection, referred to as scaled space (SS), that is an accurate representation of the true weight space. We show that SS removes redundancies in the weight space and captures the semantic distance between the possible weight configurations. In order to improve the efficiency of search, we also introduce an approximation of SS which simplifies the process of sampling weight configurations. We demonstrate these approaches on two state-of-the-art SRL frameworks: Markov logic networks and probabilistic soft logic. We perform empirical evaluation on five real-world datasets and evaluate them each on two different metrics. We also compare them against four other weight learning approaches. Our experimental results show that our proposed search-based approaches outperform likelihood-based approaches and yield up to a 10% improvement across a variety of performance metrics. Further, we perform an extensive evaluation to measure the robustness of our approach to different initializations and hyperparameters. The results indicate that our approach is both accurate and robust.more » « less
-
Abstract Statistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complexaggregate graph queries(AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine the performance of SRL and GNNs on AGQs over graphs with partially observed node labels. We show that, not surprisingly, inferring the unobserved node labels as a first step and then evaluating the queries on the fully observed graph can lead to sub-optimal estimates, and that a better approach is to compute these queries as an expectation under the joint distribution. We propose a sampling framework to tractably compute the expected values of AGQs. Motivated by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that estimate the community structure in graphs. In our empirical evaluation, we show that by estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold reduction in average error when compared to existing GNN-based approaches.more » « less
-
Free, publicly-accessible full text available September 8, 2026
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available June 16, 2026
-
Free, publicly-accessible full text available April 24, 2026
-
Free, publicly-accessible full text available April 24, 2026
An official website of the United States government
