skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2023687

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rationale

    Sulfur isotope analysis of organic sulfur‐containing molecules has previously been hindered by challenging preparatory chemistry and analytical requirements for large sample sizes. The natural‐abundance sulfur isotopic compositions of the sulfur‐containing amino acids, cysteine and methionine, have therefore not yet been investigated despite potential utility in biomedicine, ecology, oceanography, biogeochemistry, and other fields.

    Methods

    Cysteine and methionine were subjected to hot acid hydrolysis followed by quantitative oxidation in performic acid to yield cysteic acid and methionine sulfone. These stable, oxidized products were then separated by reversed‐phase high‐performance liquid chromatography (HPLC) and verified via offline liquid chromatography/mass spectrometry (LC/MS). The sulfur isotope ratios (δ34S values) of purified analytes were then measured via combustion elemental analyzer coupled to isotope ratio mass spectrometry (EA/IRMS). The EA was equipped with a temperature‐ramped chromatographic column and programmable helium carrier flow rates.

    Results

    On‐column focusing of SO2in the EA/IRMS system, combined with reduced He carrier flow during elution, greatly improved sensitivity, allowing precise (0.1–0.3‰ 1 s.d.) δ34S measurements of 1 to 10 μg sulfur. We validated that our method for purification of cysteine and methionine was negligibly fractionating using amino acid and protein standards. Proof‐of‐concept measurements of fish muscle tissue and bacteria demonstrated differences up to 4‰ between the δ34S values of cysteine and methionine that can be connected to biosynthetic pathways.

    Conclusions

    We have developed a sensitive, precise method for measuring the natural‐abundance sulfur isotopic compositions of cysteine and methionine isolated from biological samples. This capability opens up diverse applications of sulfur isotopes in amino acids and proteins, from use as a tracer in organisms and the environment, to fundamental aspects of metabolism and biosynthesis.

     
    more » « less
  2. Francois Morel (Ed.)
    Marine dissolved organic matter (DOM) is a major reservoir that links global carbon, nitrogen, and phosphorus. DOM is also important for marine sulfur biogeochemistry as the largest water column reservoir of organic sulfur. Dissolved organic sulfur (DOS) can originate from phytoplankton-derived biomolecules in the surface ocean or from abiotically “sulfurized” organic matter diffusing from sulfidic sediments. These sources differ in 34S/32S isotope ratios (δ34S values), with phytoplankton-produced DOS tracking marine sulfate (21‰) and sulfurized DOS mirroring sedimentary porewater sulfide (∼0 to –10‰). We measured the δ34S values of solid-phase extracted (SPE) DOM from marine water columns and porewater from sulfidic sediments. Marine DOM_SPE δ34S values ranged from 14.9‰ to 19.9‰ and C:S ratios from 153 to 303, with lower δ34S values corresponding to higher C:S ratios. Marine DOM_SPE samples showed consistent trends with depth: δ34S values decreased, C:S ratios increased, and δ13C values were constant. Porewater DOM_SPE was 34S-depleted (∼-0.6‰) and sulfur-rich (C:S ∼37) compared with water column samples. We interpret these trends as reflecting at most 20% (and on average ∼8%) contribution of abiotic sulfurized sources to marine DOS_SPE and conclude that sulfurized porewater is not a main component of oceanic DOS and DOM. We hypothesize that heterogeneity in δ34S values and C:S ratios reflects the combination of sulfurized porewater inputs and preferential microbial scavenging of sulfur relative to carbon without isotope fractionation. Our findings strengthen links between oceanic sulfur and carbon cycling, supporting a realization that organic sulfur, not just sulfate, is important to marine biogeochemistry. 
    more » « less