skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2024182

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Raffatellu, Manuela (Ed.)
    ABSTRACT EnteroaggregativeEscherichia coli(EAEC) is a common cause of diarrhea worldwide and is associated with growth faltering in developing countries. EAEC are defined by a characteristic adherence pattern mediated by the aggregative adherence fimbriae (AAFs). Despite the critical role of AAF in the definition of the EAEC pathotype, it is not known what host molecules mediate adherence and EAEC pathogenesis during infection of the human gastrointestinal tract. Multiple receptor candidates have been proposed based onin vitroexperimentation. We propose that AAFs interact with multiple receptors during colonization of the human gastrointestinal mucosa, and we hypothesize that structural features of the AafA protein (the major subunit of AAF variant II produced by EAEC strain 042) promote these diverse interactions. In this study, we utilize a panel of AafA variants encoding single amino acid substitutions to understand the role of individual residues in biofilm formation as well as adherence to mucin, fibronectin, and human intestinal cells. We identify both charged and uncharged residues that participate in these interactions, and these residues cluster in two regions of the protein that may define a binding pocket at the junction of polymerized subunits. Although both bovine submaxillary mucin and human fibronectin are sialylated molecules, adherence to mucin is diminished by the removal of sialic acid residues while adherence to fibronectin is not, suggesting that the mechanisms of adherence to these molecules are distinct. Overall, our data provide insight into the structural features that determine AAF/II binding to mucin, sialic acid, and human intestinal cells. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  2. Abstract ThePTCD3gene product (protein PTCD3 or MRPS39) forms the entry channel of the mitochondrial small ribosomal subunit and binds to single‐stranded mRNA. Here, we expand on the clinical manifestations ofPTCD3pathogenic variants by describing an early‐onset patient with Leigh‐like syndrome and two patients with milder form of disease, with combined oxidative phosphorylation deficiency. A 34‐year‐old male and his 33‐year‐old sister both have horizontal nystagmus, pronounced rough tremor, truncal ataxia, dysmetria, spasticity and hyperreflexia. The basal respiration rate decreased significantly for the male patient and his mother (p < 0.0001) compared to the controls. The whole genome sequencing analysis revealed two heterozygous variants in thePTCD3: c.1182T>A, p.(Tyr394Ter) and c.805C>T, p.(His269Tyr). Tyr394Ter variant ablates the C‐terminal half of the protein, including a significant portion of the central fold. In silico modelling for the variant His269Tyr shows that the inclusion of the slightly larger tyrosine sidechain is well tolerated, with no significant change in either the position or the movement of the surrounding area. The third case is a 9‐year‐old boy, who has a global developmental delay, central hypotonia, hyperreflexia and abnormal MRI.PTCD3pathogenic variant c.538+4A>G was identified by whole exome sequencing. To test the variant's effect on splicing, an RT‐PCR experiment was performed, which revealed skipping of an out‐of‐frame exon 7. 
    more » « less
  3. Abstract The N‐terminal half of the giant cytoskeletal protein obscurin is comprised of more than 50 Ig‐like domains, arranged in tandem. Domains 18–51 are connected to each other through short 5‐residue linkers, and this arrangement has been previously shown to form a semi‐flexible rod in solution. Domains 1–18 generally have slightly longer ~7 residue interdomain linkers, and the multidomain structure and motion conferred by this kind of linker is understudied. Here, we use NMR, SAXS, and MD to show that these longer linkers are associated with significantly more domain/domain flexibility, with the resulting multidomain structure being moderately compact. Further examination of the relationship between interdomain flexibility and linker length shows there is a 5 residue “sweet spot” linker length that results in dual‐domain systems being extended, and conversely that both longer or shorter linkers result in a less extended structure. This detailed knowledge of the obscurin N terminus structure and flexibility allowed for mathematical modeling of domains 1–18, which suggests that this region likely forms tangles if left alone in solution. Given how infrequently protein tangles occur in nature, and given the pathological outcomes that occur when tangles do arise, our data suggest that obscurin is likely either significantly scaffolded or else externally extended in the cell. 
    more » « less
  4. Free, publicly-accessible full text available March 1, 2026
  5. The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer. 
    more » « less
  6. Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, the subcellular structure that links the intermediate filament network of one cell to its neighbor. A mutation “hot-spot” within the NH2-terminal of the DSP protein (residues 299–515) is associated with arrhythmogenic cardiomyopathy. In a subset of DSP variants, disease is linked to calpain hypersensitivity. Previous studies show that calpain hypersensitivity can be corrected in vitro through the addition of a bulky residue neighboring the cleavage site, suggesting that physically blocking calpain accessibility is a viable strategy to restore DSP levels. Here, we aim to find drug-like molecules that also block calpain-dependent degradation of DSP. To do this, we screened ~2500 small molecules to identify compounds that specifically rescue DSP protein levels in the presence of proteases. We find that several molecules, including sodium dodecyl sulfate, palmitoylethanolamide, GW0742, salirasib, eprosarten mesylate, and GSK1838705A prevent wildtype and disease-variant-carrying DSP protein degradation in the presence of both trypsin and calpain without altering protease function. Computational screenings did not predict which molecules would protect DSP, likely due to a lack of specific DSP–drug interactions. Molecular dynamic simulations of DSP–drug complexes suggest that some long hydrophobic molecules can bind in a shallow hydrophobic groove that runs alongside the protease cleavage site. Identification of these compounds lays the groundwork for pharmacological treatment for individuals harboring these hypersensitive DSP variants. 
    more » « less
  7. There are recent reports of associations of variants in the HPDL gene with a hereditary neurological disease that presents with a wide spectrum of clinical severity, ranging from severe neonatal encephalopathy with no psychomotor development to adolescent-onset uncomplicated spastic paraplegia. Here, we report two probands from unrelated families presenting with severe and intermediate variations of the clinical course. A homozygous variant in the HPDL gene was detected in each proband; however, there was no known parental consanguinity. We also highlight reductions in citrate synthase and mitochondrial complex I activity detected in both probands in different tissues, reflecting the previously proposed mitochondrial nature of disease pathogenesis associated with HPDL mutations. Further, we speculate on the functional consequences of the detected variants, although the function and substrate of the HPDL enzyme are currently unknown. 
    more » « less