skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2024469

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Converting measurements of ice-sheet surface elevation change to mass change requires measurements of accumulation and knowledge of the evolution of the density profile in the firn. Most firn-densification models are tuned using measured depth–density profiles, a method which is based on an assumption that the density profile in the firn is invariant through time. Here we present continuous measurements of firn-compaction rates in 12 boreholes near the South Pole over a 2 year period. To our knowledge, these are the first continuous measurements of firn compaction on the Antarctic plateau. We use the data to derive a new firn-densification algorithm framed as a constitutive relationship. We also compare our measurements to compaction rates predicted by several existing firn-densification models. Results indicate that an activation energy of 60 kJ mol−1, a value within the range used by current models, best predicts the seasonal cycle in compaction rates on the Antarctic plateau. Our results suggest models can predict firn-compaction rates with at best 7% uncertainty and cumulative firn compaction on a 2 year timescale with at best 8% uncertainty. 
    more » « less