Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benjamin, Paaßen ; Carrie, Demmans Epp (Ed.)One of the keys to the success of collaborative learning is balanced participation by all learners, but this does not always happen naturally. Pedagogical robots have the potential to facilitate balance. However, it remains unclear what participation balance robots should aim at; various metrics have been proposed, but it is still an open question whether we should balance human participation in human-human interactions (HHI) or human-robot interactions (HRI) and whether we should consider robots' participation in collaborative learning involving multiple humans and a robot. This paper examines collaborative learning between a pair of students and a teachable robot that acts as a peer tutee to answer the aforementioned question. Through an exploratory study, we hypothesize which balance metrics in the literature and which portions of dialogues (including vs. excluding robots' participation and human participation in HHI vs. HRI) will better predict learning as a group. We test the hypotheses with another study and replicate them with automatically obtained units of participation to simulate the information available to robots when they adaptively fix imbalances in real-time. Finally, we discuss recommendations on which metrics learning science researchers should choose when trying to understand how to facilitate collaboration.more » « less
-
Mitrovic, A. ; & Bosch, N. (Ed.)Working collaboratively in groups can positively impact performance and student engagement. Intelligent social agents can provide a source of personalized support for students, and their benefits likely extend to collaborative settings, but it is difficult to determine how these agents should interact with students. Reinforcement learning (RL) offers an opportunity for adapting the interactions between the social agent and the students to better support collaboration and learning. However, using RL in education with social agents typically involves training using real students. In this work, we train an RL agent in a high-quality simulated environment to learn how to improve students’ collaboration. Data was collected during a pilot study with dyads of students who worked together to tutor an intelligent teachable robot. We explore the process of building an environment from the data, training a policy, and the impact of the policy on different students, compared to various baselines.more » « less
-
Speakers build rapport in the process of aligning conversational behaviors with each other. Rapport engendered with a teachable agent while instructing domain material has been shown to promote learning. Past work on lexical alignment in the field of education suffers from limitations in both the measures used to quantify alignment and the types of interactions in which alignment with agents has been studied. In this paper, we apply alignment measures based on a data-driven notion of shared expressions (possibly composed of multiple words) and compare alignment in one-on-one human-robot (H-R) interactions with the H-R portions of collaborative human-human-robot (H-H-R) interactions. We find that students in the H-R setting align with a teachable robot more than in the H-H-R setting and that the relationship between lexical alignment and rapport is more complex than what is predicted by previous theoretical and empirical work.more » « less