skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2024768

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep reinforcement learning (deep RL) has emerged as an effective tool for developing controllers for legged robots. However, vanilla deep RL often requires a tremendous amount of training samples and is not feasible for achieving robust behaviors. Instead, researchers have investigated a novel policy architecture by incorporating human experts' knowledge, such as Policies Modulating Trajectory Generators (PMTG). This architecture builds a recurrent control loop by combining a parametric trajectory generator (TG) and a feedback policy network to achieve more robust behaviors. In this work, we propose Policies Modulating Finite State Machine (PM-FSM) by replacing TGs with contact-aware finite state machines (FSM), which offers more flexible control of each leg. This invention offers an explicit notion of contact events to the policy to negotiate unexpected perturbations. We demonstrated that the proposed architecture could achieve more robust behaviors in various scenarios, such as challenging terrains or external perturbations, on both simulated and real robots. 
    more » « less