skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 2024774

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the setting where the nodes in an undirected, connected network collaborate to solve a shared objective modeled as the sum of smooth functions. We assume that each summand is privately known by a unique node. NEAR-DGD is a distributed first order method which permits adjusting the amount of communication between nodes relative to the amount of computation performed locally in order to balance convergence accuracy and total application cost. In this work, we generalize the convergence properties of a variant of NEAR-DGD from the strongly convex to the nonconvex case. Under mild assumptions, we show convergence to minimizers of a custom Lyapunov function. Moreover, we demonstrate that the gap between those minimizers and the second order stationary solutions of the original problem can become arbitrarily small depending on the choice of algorithm parameters. Finally, we accompany our theoretical analysis with a numerical experiment to evaluate the empirical performance of NEAR-DGD in the nonconvex setting. 
    more » « less
  2. null (Ed.)