Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 4, 2024
-
The passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty. The models that form the basis of these problems should be reasonably accurate yet not prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a common language. Classical theories of mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in models of continuum robots, both in terms of number and of quality, for geometrically nonlinear models built from the general family of one-dimensional rod models of continuum mechanics. Consideration is also given to the variety of actuators found in existing designs, the types of interaction that occur between continuum robots and their biomedical environments, the imposition of constraints on degrees of freedom, and to the numerical solution of the family of models under study. Finally, some open problems of modeling are discussed and future challenges are identified.more » « less
-
Helmholtz stereopsis (HS) exploits the reciprocity principle of light propagation (i.e., the Helmholtz reciprocity) for 3D reconstruction of surfaces with arbitrary reflectance. In this paper, we present the polarimetric Helmholtz stereopsis (polar-HS), which extends the classical HS by considering the polarization state of light in the reciprocal paths. With the additional phase information from polar- ization, polar-HS requires only one reciprocal image pair. We formulate new reciprocity and diffuse/specular polari- metric constraints to recover surface depths and normals using an optimization framework. Using a hardware proto- type, we show that our approach produces high-quality 3D reconstruction for different types of surfaces, ranging from diffuse to highly specular.more » « less