Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Data science tools can help elucidate trends from clickstreams and other interactions generated by students actively using interactive textbooks. Specifically, data generated when using animations, which are multi-step visuals with text captions, will be presented in this work. Each animation step divides content into appropriate chunks, and so aligns with tenets of cognitive load theory. Both the quantity and timing of students’ clicks record provide large data sets when examining students across hundreds of animations and multiple cohorts. Specifically, an interactive textbook for a chemical engineering course in Material and Energy Balances will be examined and build upon data presented previously. While most of the previous data focused on very high reading completion rates (>99% median) compared to traditional textbooks (20-50%), a deeper examination of how long students take when watching animations will be explored. With over 140 unique animations and tens of thousands of completed views over five cohorts, a spectral clustering algorithm applied to students’ animation view times distinguished several types of animation watching behavior as well as monitor changes in this animation watching behavior over the course of a semester. After examining different numbers of clusters, two or three clusters in each chapter captured the animation usage. These clusters usually correspond to a group of students who watched animations at 1x speed (longer), another group who watched at 2x speed (shorter), and a third group, when present, who watched irregularly, including skipping animations. Overall, more students belonged to the belonged to the cluster with longer view times, with 63% of students aggregated over all cohorts and chapters compared to 35% of students in the cluster with shorter view times. The remaining 2% of students belonged to the irregular cluster, which was present in less than one quarter of the chapters. Many students stayed in the same cluster between chapters, while a smaller fraction switched between the longer and shorter clusters.more » « less
-
Interactive textbooks generate big data through student reading participation, including animations, question sets, and auto-graded homework. Animations are multi-step, dynamic visuals with text captions. By dividing new content into smaller chunks of information, student engagement is expected to be high, which aligns with tenets of cognitive load theory. Specifically, students’ clicks are recorded and measure usage, completion, and view time per step and for entire animations. Animation usage data from an interactive textbook for a chemical engineering course in Material and Energy Balances accounts for 60,000 animation views across 140+ unique animations. Data collected across five cohorts between 2016 and 2020 used various metrics to capture animation usage including watch and re-watch rates as well as the length of animation views. Variations in view rate and time were examined across content, parsed by book chapter, and five animation characterizations (Concept, Derivation, Figures and Plots, Physical World, and Spreadsheets). Important findings include: 1) Animation views were at or above 100% for all chapters and cohorts, 2) Median view time varies from 22 s (2-step) to 59 s (6-step) - a reasonable attention span for students and cognitive load, 3) Median view time for animations characterized as Derivation was the longest (40 s) compared to Physical World animations, which resulted in the shortest time (20 s).more » « less
-
This paper provides an overview of my contributions to a project to measure and predict student’s mental workload when using digital interactive textbooks. The current work focuses on analysis of clickstream data from the textbook in search of viewing patterns among students. It was found that students typically fit one of three viewing patterns. These patterns can be used in further research to inform creation of new interactive texts for improved student success.more » « less
-
Attitudes Toward and Usage of Animations in an Interactive Textbook for Material and Energy Balancesnull (Ed.)Attitudes Toward and Usage of Animations in an Interactive Textbook for Material and Energy Balances Abstract The concept of active learning or “learning by doing” is applied to animations within an interactive textbook in this contribution. A Material and Energy Balance (MEB) course for undergraduate chemical engineering students has generated large data sets by using an interactive textbook from zyBooks. MEB is a foundational course that includes new terminology, the basic principles of mass and energy conservation, and tools for problem solving. Here, outside of class engagement is measured using student views of multi-step animations that introduce MEB concepts in small chunks. Students usage of the interactive textbook have been logged for several years and reading participation was measured as high as 99% by median. Within the reading participation data are the clicks to start, complete, and re-watch over 100 animations across the book, which has not been explored in detail. This paper addresses research questions specifically related to animations. First, do students complete viewing an interactive animation and what is the rate of re-watch? Next, do certain animations gather re-watch views across several cohorts? Also, what is students’ understanding and attitude about using animations in their engineering education? We will administer pre- and post-surveys to understand students’ interest in chemical engineering as well as animation use.more » « less
An official website of the United States government

Full Text Available