Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The gut microbiome plays a fundamental role in human health and disease. Individual variations in the microbiome and the corresponding functional implications are key considerations to enhance precision health and medicine. Metaproteomics has recently revealed protein expression that might be associated with human health and disease. Existing studies focused on either human proteins or bacterial proteins that can be identified from (meta)proteomics data sets, but not both. In this study, we examined the feasibility of identifying both human and bacterial proteins that are differentially expressed between healthy and diseased individuals from metaproteomics data sets. We further evaluated different strategies of using identified peptides and proteins for building predictive models. By leveraging existing metaproteomics data sets and a tool that we have developed for metaproteomics data analysis (MetaProD), we were able to derive both human and bacterial differentially expressed proteins that could serve as potential biomarkers for all diseases we studied. We also built predictive models using identified peptides and proteins as features for prediction of human diseases. Our results showed peptide-based identifications over protein-based ones often produce the most accurate models and that feature selection can offer improvements. Prediction accuracy could be further improved, in some cases, by including bacterial identifications, but missing data in bacterial identifications remains problematic.more » « less
-
Lengauer, Thomas (Ed.)Abstract MotivationMicrobial signatures in the human microbiome are closely associated with various human diseases, driving the development of machine learning models for microbiome-based disease prediction. Despite progress, challenges remain in enhancing prediction accuracy, generalizability, and interpretability. Confounding factors, such as host’s gender, age, and body mass index, significantly influence the human microbiome, complicating microbiome-based predictions. ResultsTo address these challenges, we developed MicroKPNN-MT, a unified model for predicting human phenotype based on microbiome data, as well as additional metadata like age and gender. This model builds on our earlier MicroKPNN framework, which incorporates prior knowledge of microbial species into neural networks to enhance prediction accuracy and interpretability. In MicroKPNN-MT, metadata, when available, serves as additional input features for prediction. Otherwise, the model predicts metadata from microbiome data using additional decoders. We applied MicroKPNN-MT to microbiome data collected in mBodyMap, covering healthy individuals and 25 different diseases, and demonstrated its potential as a predictive tool for multiple diseases, which at the same time provided predictions for the missing metadata. Our results showed that incorporating real or predicted metadata helped improve the accuracy of disease predictions, and more importantly, helped improve the generalizability of the predictive models. Availability and implementationhttps://github.com/mgtools/MicroKPNN-MT.more » « less
-
Recently developed protein language models have enabled a variety of applications with the protein contextual embeddings they produce. Per-protein representations (each protein is represented as a vector of fixed dimension) can be derived via averaging the embeddings of individual residues, or applying matrix transformation techniques such as the discrete cosine transformation (DCT) to matrices of residue embeddings. Such protein-level embeddings have been applied to enable fast searches of similar proteins; however, limitations have been found; for example, PROST is good at detecting global homologs but not local homologs, and knnProtT5 excels for proteins with single domains but not multidomain proteins. Here, we propose a novel approach that first segments proteins into domains (or subdomains) and then applies the DCT to the vectorized embeddings of residues in each domain to infer domain-level contextual vectors. Our approach, called DCTdomain, uses predicted contact maps from ESM-2 for domain segmentation, which is formulated as adomain segmentationproblem and can be solved using arecursive cutalgorithm (RecCut in short) in quadratic time to the protein length; for comparison, an existing approach for domain segmentation uses a cubic-time algorithm. We show such domain-level contextual vectors (termed asDCT fingerprints) enable fast and accurate detection of similarity between proteins that share global similarities but with undefined extended regions between shared domains, and those that only share local similarities. In addition, tests on a database search benchmark show that the DCTdomain is able to detect distant homologs by leveraging the structural information in the contextual embeddings.more » « less
-
Coelho, Luis Pedro (Ed.)Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species.more » « less
-
null (Ed.)Abstract Background A few recent large efforts significantly expanded the collection of human-associated bacterial genomes, which now contains thousands of entities including reference complete/draft genomes and metagenome assembled genomes (MAGs). These genomes provide useful resource for studying the functionality of the human-associated microbiome and their relationship with human health and diseases. One application of these genomes is to provide a universal reference for database search in metaproteomic studies, when matched metagenomic/metatranscriptomic data are unavailable. However, a greater collection of reference genomes may not necessarily result in better peptide/protein identification because the increase of search space often leads to fewer spectrum-peptide matches, not to mention the drastic increase of computation time. Methods Here, we present a new approach that uses two steps to optimize the use of the reference genomes and MAGs as the universal reference for human gut metaproteomic MS/MS data analysis. The first step is to use only the high-abundance proteins (HAPs) (i.e., ribosomal proteins and elongation factors) for metaproteomic MS/MS database search and, based on the identification results, to derive the taxonomic composition of the underlying microbial community. The second step is to expand the search database by including all proteins from identified abundant species. We call our approach HAPiID (HAPs guided metaproteomics IDentification). Results We tested our approach using human gut metaproteomic datasets from a previous study and compared it to the state-of-the-art reference database search method MetaPro-IQ for metaproteomic identification in studying human gut microbiota. Our results show that our two-steps method not only performed significantly faster but also was able to identify more peptides. We further demonstrated the application of HAPiID to revealing protein profiles of individual human-associated bacterial species, one or a few species at a time, using metaproteomic data. Conclusions The HAP guided profiling approach presents a novel effective way for constructing target database for metaproteomic data analysis. The HAPiID pipeline built upon this approach provides a universal tool for analyzing human gut-associated metaproteomic data.more » « less
An official website of the United States government
