skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2025816

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Genetic technologies such as DNA barcoding make it easier and less expensive to monitor biodiversity and its associated ecosystem services, particularly in biodiversity hotspots where traditional assessments are challenging. Successful use of these data‐driven technologies, however, requires access to appropriate reference data. We reviewed the >373,584 reference plant DNA barcodes in public repositories and found that they cumulatively cover a remarkable quarter of the ~435,000 extant land plant species (Embryophyta). Nevertheless, coverage gaps in tropical biodiversity hotspots reflect well‐documented biases in biodiversity science – most reference specimens originated in the Global North. Currently, at least 17% of plant families lack any reference barcode data whatsoever, affecting tropical and temperate regions alike. Investigators often emphasise the importance of marker choice and the need to ensure protocols are technically capable of detecting and identifying a broad range of taxa. Yet persistent geographic and taxonomic gaps in the reference datasets show that these protocols rely upon risk undermining all downstream applications of the strategy, ranging from basic biodiversity monitoring to policy‐relevant objectives – such as the forensic authentication of materials in illegal trade. Future networks of investigators could work strategically to improve data coverage, which will be essential in global efforts to conserve biodiversity while advancing more fair and equitable access to benefits arising from genetic resources. 
    more » « less
  2. None (Ed.)
    Abstract AimEvaluate the temporal changes in species diversity, composition, and structure of ephemeral plant communities and the seed bank in response to long‐term herbivore exclusion over 11 years in plots with and without herbivores. LocationNorth‐central Chile. MethodsWe obtained information on ephemeral vegetation cover in August and September using the intercept point method and recorded seed abundance in April. The Bosque Fray Jorge National Park Long‐Term Socio‐Ecological Research (LTSER) provided these records covering 11 years (2009–2019). From the original experiment of 20 plots, we used eight plots divided into two treatments: four plots allowed free access to all herbivores (with herbivores), while the other four plots excluded herbivores (without herbivores). ResultsWe found that Hill–Shannon diversity increased in plant communities with herbivores and a temporal increase in the cover of the dominant species,Plantago hispidula, under herbivore exclusion. In wet years, species richness and temporal turnover of plant communities increased independently of treatment. Although seed abundance differed among treatments and years, population structure remained constant over time and among treatments, suggesting that the seed bank acts as a buffer against shocks that modify plant community dynamics. Structural equation modeling revealed that precipitation, via its positive effects onPlantago hispidula, increases native plant richness to a greater extent than herbivores. However, in the absence of herbivores, precipitation directly affects native species richness. Moreover, we found that precipitation also influences the native species richness of the seed bank, both directly and indirectly, although its impacts exhibit a time lag. ConclusionsOur study demonstrates that the temporal dynamics of ephemeral plant communities and seed banks in semi‐arid ecosystems are strongly coupled to climate variability, highlighting the vulnerability of these communities to biodiversity loss and climate change. 
    more » « less
  3. Abstract Arid ecosystems are strongly limited by water availability, and precipitation plays a major role in the dynamics of all species in arid regions, as well as the ecosystem processes that occur there. However, understanding how biotic interactions mediate long‐term responses of dryland ecosystems to rainfall remains very fragmented. We report on a unique large‐scale field experiment spanning 25 yr and three trophic levels (plants, small mammal herbivores, predators) in a dryland ecosystem in the northern Chilean Mediterranean Region where we assessed how biotic interactions influence the long‐term plant community responses to precipitation. As the most persistent ecological changes in dryland systems may result from changes in the structure, cover, and composition of the perennial vegetation, we emphasized the interplay between bottom‐up and top‐down controls of perennial plants in our analyses. Rainfall was the primary factor affecting the dynamics of, and interactions among, plants and small mammals. Ephemeral plant cover dynamics closely tracked short‐term annual rainfall, but seemed unaffected by top‐down controls (herbivory). In contrast, the response of the perennial plant cover to precipitation was mediated by (1) a complex interplay between subtle top‐down (herbivory) controls that become more apparent in the long‐term, (2) competition with ephemeral plants during wet years, and (3) an indirect effect of predators on subdominant shrubs and perennial herbs. This long‐term field experiment highlights how climate‐induced responses of arid perennial vegetation are influenced by interactions across trophic levels and temporal scales. In the face of global change, understanding how multi‐trophic controls mediate dryland vegetation responses to climate is essential to properly managing the conservation of biodiversity in arid systems. 
    more » « less
  4. null (Ed.)