skip to main content

Search for: All records

Award ID contains: 2025954

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective

    Fisheries provide countless benefits to human populations but face many threats ranging from climate change to overfishing. Despite these threats and an increase in fishing pressure globally, most stocks remain unassessed and data limited. An abundance of data‐limited assessment methods exists, but each has different data requirements, caveats, and limitations. Furthermore, developing informative model priors can be difficult when little is known about the stock, and uncertain model parameters could create misleading results about stock status. Our research illustrates an approach for rapidly creating robust initial assessments of unregulated and data‐limited fisheries without the need for additional data collection.


    Our method uses stakeholder knowledge combined with a series of data‐limited tools to identify an appropriate stock assessment method, conduct an assessment, and examine how model uncertainty influences the results. Our approach was applied to the unregulated and data‐limited fishery for Crevalle JackCaranx hipposin Florida.


    Results suggested a steady increase in exploitation and a decline in stock biomass over time, with the stock currently overfished and undergoing overfishing. These findings highlight a need for management action to prevent continued stock depletion.


    Our approach can help to streamline the initial assessment and management process for unregulated and data‐limited stocks and serves as an additional tool for combating the many threats facing global fisheries.

    more » « less
  2. Abstract Context

    Land-cover class definitions are scale-dependent. Up-scaling categorical data must account for that dependence, but most decision rules aggregating categorical data do not produce scale-specific class definitions. However, non-hierarchical, empirically derived classification systems common in phytosociology define scale-specific classes using species co-occurrence patterns.


    Evaluate tradeoffs in class precision and representativeness when up-scaling categorical data across natural landscapes using the multi-dimensional grid-point (MDGP)-scaling algorithm, which generates scale-specific class definitions; and compare spectral detection accuracy of MDGP-scaled classes to ‘majority-rule’ aggregated classes.


    Vegetation maps created from 2-m resolution WorldView-2 data for two Everglades wetland areas were scaled to the 30-m Landsat grid with the MDGP-scaling algorithm. A full-factorial analysis evaluated the effects of scaled class-label precision and class representativeness on compositional information loss and detection accuracy of scaled classes from multispectral Landsat data.


    MDGP‐scaling retained between 3.8 and 27.9% more compositional information than the majority rule as class-label precision increased. Increasing class-label precision and information retention also increased spectral class detection accuracy from Landsat data between 1 and 8.6%. Rare class removal and increase in class-label similarity were controlled by the class representativeness threshold, leading to higher detection accuracy than the majority rule as class representativeness increased.


    When up-scaling categorical data across natural landscapes, negotiating trade-offs in thematic precision, landscape-scale class representativeness and increased information retention in the scaled map results in greater class-detection accuracy from lower-resolution, multispectral, remotely sensed data. MDGP-scaling provides a framework to weigh tradeoffs and to make informed decisions on parameter selection.

    more » « less
    Free, publicly-accessible full text available March 1, 2024
  3. Abstract

    Analysis of lignin in seawater is essential to understanding the fate of terrestrial dissolved organic matter (DOM) in the ocean and its role in the carbon cycle. Lignin is typically quantified by gas or liquid chromatography, coupled with mass spectrometry (GC‐MS or LC‐MS). MS instrumentation can be relatively expensive to purchase and maintain. Here we present an improved approach for quantification of lignin phenols using LC and absorbance detection. The approach applies a modified version of parallel factor analysis (PARAFAC2) to 2ndderivative absorbance chromatograms. It is capable of isolating individual elution profiles of analytes despite co‐elution and overall improves sensitivity and specificity, compared to manual integration methods. For most lignin phenols, detection limits below 5 nmol L−1were achieved, which is comparable to MS detection. The reproducibility across all laboratory stages for our reference material showed a relative standard deviation between 1.47% and 16.84% for all 11 lignin phenols. Changing the amount of DOM in the reaction vessel for the oxidation (dissolved organic carbon between 22 and 367 mmol L−1), did not significantly affect the final lignin phenol composition. The new method was applied to seawater samples from the Kattegat and Davis Strait. The total concentration of dissolved lignin phenols measured in the two areas was between 4.3–10.1 and 2.1–3.2 nmol L−1, respectively, which is within the range found by other studies. Comparison with a different oxidation approach and detection method (GC‐MS) gave similar results and underline the potential of LC and absorbance detection for analysis of dissolved lignin with our proposed method.

    more » « less
  4. Abstract

    The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.

    We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.

    We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.

    Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.

    Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.

    more » « less
  5. Abstract

    The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.

    more » « less
  6. Abstract

    Macrophyte foundation species provide both habitat structure and primary production, and loss of these habitats can alter species interactions and lead to changes in energy flow in food webs. Extensive seagrass meadows in Florida Bay have recently experienced a widespread loss of seagrass habitat due to a Thalassia testudinum mass mortality event in 2015 associated with prolonged hypersalinity and bottom-water anoxia. Using stable isotope analysis paired with Bayesian mixing models, we investigated the basal resource use of seven species of seagrass-associated consumers across Florida Bay in areas affected by the 2015 seagrass die-off. Three years after the die-off, basal resource use did not differ for species collected inside and outside the die-off affected areas. Instead, consumers showed seasonal patterns in basal resource use with seagrass the most important in the wet season (58%), while epiphytes were the most important in the dry season (44%). Additionally, intraspecific spatial variability in resource use was lower in the wet season compared to the dry season. We were unable to detect a legacy effect of a major disturbance on the basal resource use of the most common seagrass-associated consumers in Florida Bay.

    more » « less
  7. Abstract

    Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m). Mangroves on well-drained sites (83%) resprouted new leaves within one year after the storm. By contrast, in poorly-drained inland sites, we detected one of the largest mangrove diebacks on record (10,760 ha), triggered by Irma. We found evidence that the combination of low elevation (median = 9.4 cm asl), storm surge water levels (>1.4 m above the ground surface), and hydrologic isolation drove coastal forest vulnerability and were independent of tree height or wind exposure. Our results indicated that storm surge and ponding caused dieback, not wind. Tidal restoration and hydrologic management in these vulnerable, low-lying coastal areas can reduce mangrove mortality and improve resilience to future cyclones.

    more » « less
  8. Abstract

    In aquatic systems, refuge habitats increase resistance to drying events and maintain populations in disturbed environments. However, reduced water availability and altered flow regimes threaten the function of these habitats. We conducted a capture–mark–recapture study, integrating angler citizen science. Our objectives were to quantify variation in survival of Florida Largemouth BassMicropterus salmoides floridanusin a coastal refuge habitat across seasonal hydrological periods and over 4 years of varying drying severity and to determine the contribution of angler sampling to improving capture probabilities. Apparent survival of Florida Largemouth Bass in the coastal Everglades was highest in wet and drying periods and lowest in dry and reflooding periods. Interannual survival was closely tied to the length of upstream marsh drying, with the lowest observed survival (0.21) during a drought year. The inclusion of angler sampling improved recapture probabilities, suggesting that angler data can supplement standardized electrofishing sampling. Findings show that during short drying events Florida Largemouth Bass survival can be relatively high, with implications for Everglades restoration. Understanding the ability of refuge habitats to buffer populations from drying disturbance is a key component for conservation and restoration, particularly under climate change scenarios.

    more » « less
  9. Abstract

    Mangroves are the most blue-carbon rich coastal wetlands contributing to the reduction of atmospheric CO2through photosynthesis (sequestration) and high soil organic carbon (C) storage. Globally, mangroves are increasingly impacted by human and natural disturbances under climate warming, including pervasive pulsing tropical cyclones. However, there is limited information assessing cyclone’s functional role in regulating wetlands carbon cycling from annual to decadal scales. Here we show how cyclones with a wide range of integrated kinetic energy (IKE) impact C fluxes in the Everglades, a neotropical region with high cyclone landing frequency. Using long-term mangrove Net Primary Productivity (Litterfall, NPPL) data (2001–2018), we estimated cyclone-induced litterfall particulate organic C (litter-POC) export from mangroves to estuarine waters. Our analysis revealed that this lateral litter-POC flux (71–205 g C m−2 year−1)—currently unaccounted in global C budgets—is similar to C burial rates (69–157 g C m−2 year−1) and dissolved inorganic carbon (DIC, 61–229 g C m−2 year−1) export. We proposed a statistical model (PULITER) between IKE-based pulse index and NPPLto determine cyclone’s impact on mangrove role as C sink or source. Including the cyclone’s functional role in regulating mangrove C fluxes is critical to developing local and regional climate change mitigation plans.

    more » « less
  10. Abstract

    Coastal ecosystems are exposed to saltwater intrusion but differential effects on biogeochemical cycling are uncertain. We tested how elevated salinity and phosphorus (P) individually and interactively affect microbial activities and biogeochemical cycling in freshwater and brackish wetland soils. In experimental mesocosms, we added crossed gradients of elevated concentrations of soluble reactive P (SRP) (0, 20, 40, 60, 80 μg/L) and salinity (0, 4, 7, 12, 16 ppt) to freshwater and brackish peat soils (10, 14, 17, 22, 26 ppt) for 35 d. We quantified changes in water chemistry [dissolved organic carbon (DOC), ammonium (), nitrate + nitrite (N + N), SRP concentrations], soil microbial extracellular enzyme activities, respiration rates, microbial biomass C, and soil chemistry (%C, %N, %P, C:N, C:P, N:P). DOC, , and SRP increased in freshwater but decreased in brackish mesocosms with elevated salinity. DOC similarly decreased in brackish mesocosms with added P, and N + N decreased with elevated salinity in both freshwater and brackish mesocosms. In freshwater soils, water column P uptake occurred only in the absence of elevated salinity and when P was above 40 µg/L. Freshwater microbial EEAs, respiration rates, and microbial biomass C were consistently higher compared to those from brackish soils, and soil phosphatase activities and microbial respiration rates in freshwater soils decreased with elevated salinity. Elevated salinity increased arylsulfatase activities and microbial biomass C in brackish soils, and elevated P increased microbial respiration rates in brackish soils. Freshwater soil %C, %N, %P decreased and C:P and N:P increased with elevated salinity. Elevated P increased %C and C:N in freshwater soils and increased %P but decreased C:P and N:P in brackish soils. Freshwater soils released more C and nutrients than brackish soils when exposed to elevated salinity, and both soils were less responsive to elevated P than expected. Freshwater soils became more nutrient‐depleted with elevated salinity, whereas brackish soils were unaffected by salinity but increased P uptake. Microbial activities in freshwater soils were inhibited by elevated salinity and unaffected by added P, but brackish soil microbial activities slightly increased with elevated salinity and P.

    more » « less