- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Shillington, Donna J (2)
-
Wiens, Douglas A (2)
-
Bécel, Anne (1)
-
Clarke, Jacob (1)
-
Estep, Justin (1)
-
Gaherty, James B (1)
-
Li, Zongshan (1)
-
Nedimović, Mladen R (1)
-
Regalla, Christine (1)
-
Shen, Weisen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Oceanic plates experience extensive normal faulting as they bend and subduct, enabling fracturing of the incoming lithosphere. Debate remains about the relative importance of pre‐existing faults, plate curvature and other factors controlling the extent and style of bending‐related faulting. The subduction zone off the Alaska Peninsula is an ideal place to investigate controls on bending faulting as the orientation of the abyssal‐hill fabric with respect to the trench and plate curvature vary along the margin. Here, we characterize faulting between longitudes 161°W and 155°W using newly collected multibeam bathymetry data. We also use a compilation of seismic reflection data to constrain patterns of sediment thickness on the incoming plate. Although sediment thickness increases over 1 km from 156°W to 160°W, most sediments were deposited prior to the onset of bending faulting and thus should have limited impact on the expression of bend‐related fault strikes and throws in bathymetry data. Where magnetic anomalies trend subparallel to the trench (<30°) west of ∼156°W, bending faults parallel magnetic anomalies, implying that bending faults reactivate pre‐existing structures. Where magnetic anomalies are highly oblique (>30°) to the trench east of 156°W, no bending faults are observed. Summed fault throws increase to the west, including where pre‐existing structure orientations are constant (between 157 and 161°W), suggesting that another factor such as the increase in slab curvature must influence bending faulting. However, the westward increase in summed fault throws is more abrupt than expected for gradual changes in slab bending alone, suggesting potential feedbacks between pre‐existing structures, slab dip, and faulting.more » « less
-
Li, Zongshan; Wiens, Douglas A; Shen, Weisen; Shillington, Donna J (, Journal of Geophysical Research: Solid Earth)Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments.more » « less
An official website of the United States government
