skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2026068

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundVirus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression inArabidopsis thalianabyMyzus persicae(green peach aphid), and turnip mosaic virus (TuMV). ResultsBy investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors. This study presents evidence that the combination of virus-vector-host interactions induces significant changes in hormone and secondary metabolite biosynthesis, as well as downstream factors involved in feedback loops within hormone signaling pathways. This study also shows that gene expressions are regulated through alternative pre-mRNA splicing and the use of alternative transcription start and termination sites. ConclusionsThese combined data suggest that complex genetic changes occur as plants adapt to the combined challenges posed by aphids and the viruses they vector. This study also provides more advanced analyses that could be used in the future to dissect the genetic mechanisms mediating tripartite interactions and inform future breeding programs. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Plant viruses both trigger and inhibit host plant defense responses, including defenses that target their insect vectors, such as aphids. Turnip mosaic viru (TuMV) infection and its protein, NIa-Pro (nuclear inclusion protease a), suppress aphid-induced plant defenses, however the mechanisms of this suppression are still largely unknown. In this study, we determined that NIa-Pro’s protease activity is required to increase aphid performance on host plants and that 40 transcripts with predicted NIa-Pro cleavage sequences are regulated in Arabidopsis plants challenged with aphids and/or virus compared to healthy controls. One of the candidates, MEDIATOR 16 (MED16), regulates the transcription of ethylene (ET)/jasmonic acid (JA)-dependent defense responses against necrotrophic pathogens. We show that a nuclear localization signal is removed from MED16 by specific proteolytic cleavage in virus-infected plants and in plants overexpressing NIa-Pro in the presence of aphids. Although some cleavage was occasionally detected in the absence of virus infection, it occurred at a much higher rate in plants that were virus-infected or overexpressing NIa-Pro, especially when aphids were also present. This suggests MED16 functions in the nucleus may be impacted in virus infected plants. Consistent with this, induction of the MED16-dependent transcript ofPLANT DEFENSIN 1.2 (PDF1.2), was reduced in virus-infected plants and in plants expressing NIa-Pro compared to controls, but not in plants expressing NIa-Pro C151A that lacks its protease activity. Finally, we show the performance of both the virus and the aphid vector was enhanced onmed16mutant Arabidopsis compared to controls. Overall, this study demonstrates MED16 regulates defense responses against both the virus and the aphid and provides insights into the mechanism by which TuMV suppresses anti-virus and anti-herbivore defenses. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Abstract Global climate change is causing more frequent and severe droughts, which can have negative impacts on plant growth and crop productivity. Under drought conditions, plants produce the hormone ABA (abscisic acid), which regulates adaptive responses, such as stomatal closure and root elongation. Plant viruses have been used in the lab to convey new traits to plants and could also be used to increase production of ABA or to enhance downstream plant drought resistance responses.In this study, foxtail mosaic virus (FoMV) was used to silenceZmPP2C‐A10, a negative regulator of ABA signalling, in maize (Zea maysL.). Both silenced and control plants were exposed to an 8‐day drought treatment, followed by a 30‐day period of rewatering, after which indicators of drought resistance were measured.After drought treatment, we observed a nearly twofold increase in expression of a stress‐mitigation gene,ZmRAB17, reduced chlorophyll fluorescence changes (indicator of stress), and increased plant biomass and development in theZmPP2C‐A10‐silenced maize compared to controls.These results demonstrate that the FoMV system can be used to silence endogenous expression ofZmPP2C‐A10and increase maize tolerance to drought. This could offer a useful tool to improve crop traits and reduce yield loss during the growing season. 
    more » « less
  4. Abstract Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development. 
    more » « less
  5. Free, publicly-accessible full text available June 1, 2026
  6. Virus infection can increase drought tolerance of infected plants compared with noninfected plants; however, the mechanisms mediating virus-induced drought tolerance remain unclear. In this study, we demonstrate turnip mosaic virus (TuMV) infection increases Arabidopsis thaliana survival under drought compared with uninfected plants. To determine if specific TuMV proteins mediate drought tolerance, we cloned the coding sequence for each of the major viral proteins and generated transgenic A. thaliana that constitutively express each protein. Three TuMV proteins, 6K1, 6K2, and NIa-Pro, enhanced drought tolerance of A. thaliana when expressed constitutively in plants compared with controls. While in the control plant, transcripts related to abscisic acid (ABA) biosynthesis and ABA levels were induced under drought, there were no changes in ABA or related transcripts in plants expressing 6K2 under drought compared with well-watered conditions. Expression of 6K2 also conveyed drought tolerance in another host plant, Nicotiana benthamiana, when expressed using a virus overexpression construct. In contrast to ABA, 6K2 expression enhanced salicylic acid (SA) accumulation in both Arabidopsis and N. benthamiana. These results suggest 6K2-induced drought tolerance is mediated through increased SA levels and SA-dependent induction of plant secondary metabolites, osmolytes, and antioxidants that convey drought tolerance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  7. Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors. 
    more » « less
  8. Abstract Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant–virus–vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant–virus–vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector–virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus–vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant–virus–vector interactions. 
    more » « less