skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2026790

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Song, Hojun (Ed.)
      Widespread concern about the “decline of taxonomy” has motivated calls to action to re-invigorate the field by enhancing taxonomic training, along with increasing taxonomy funding and positions, improving citation rates, and describing species more rapidly. Taxonomic training has historically been apprentice style, with individuals training for years under expert guidance. This approach offers a rich learning experience but inherently limits trainee number and relies on students’ earlier exposure to taxonomy. We describe a scaled-up taxonomic training model using a Course-based Undergraduate Research Experience (CURE) to provide early taxonomy research experience and broadly applicable scientific research skills. Results from a 45-student taxonomy-focused course conducted concurrently at 2 universities resulted in increased interest in taxonomic revisions and ability to explain taxonomic concepts, with one-third of students developing more interest in taxonomic careers. General science skill development was high when compared to a large sample of other CURE courses. The research focus of the course was taxonomic revision of the ant genus Nylanderia in Meso-America; students worked with instructors to delimit and describe new species. Here, we present 4 newly described species: Nylanderia ambulator, sp. nov. Nylanderia aurantia, sp. nov., Nylanderia collaborans, sp. nov., and Nylanderia maximon, sp. nov., with an additional 13 putative species noted for further revisionary work. This expanded taxonomic training model combines hands-on research experience with peer-learning and caters to students with minimal exposure to taxonomy. As a result, this approach broadens recruitment to more diverse audiences and results in enhanced awareness of and appreciation for taxonomy. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Camacho, Gabriela P (Ed.)
    Abstract The ant genus Nylanderia Emery has a cosmopolitan distribution and includes 150 extant described species and subspecies, with potentially hundreds more undescribed. Global taxonomic revision has long been stalled by strong intra- and interspecific morphological variation, limited numbers of diagnostic characters, and dependence on infrequently collected male specimens for species description and identification. Taxonomy is further complicated by Nylanderia being one of the most frequently intercepted ant genera at ports of entry worldwide, and at least 15 globetrotting species have widespread and expanding ranges, making species-level diagnoses difficult. Three species complexes (‘bourbonica complex’, ‘fulva complex’, and ‘guatemalensis complex’) include globetrotting species. To elucidate the phylogenetic positions of these three complexes and delimit species boundaries within each, we used target enrichment of ultraconserved elements (UCEs) from 165 specimens representing 98 Nylanderia morphospecies worldwide. We also phased the UCEs, effectively doubling sample size and increasing population-level sampling. After recovering strong support for the monophyly of each complex, we extracted COI barcodes and SNPs from the UCE data and tested within-complex morphospecies hypotheses using three molecular delimitation methods (SODA, bPTP, and STACEY). This comparison revealed that most methods tended to over-split taxa, but results from STACEY were most consistent with our morphospecies hypotheses. Using these results, we recommend species boundaries that are conservative and most congruent across all methods. This work emphasizes the importance of integrative taxonomy for invasive species management, as globetrotting occurs independently across at least nine different lineages across Nylanderia. 
    more » « less