- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bassiri‐Gharb, Nazanin (2)
-
Edwards, David (1)
-
Gaponenko, Iaroslav (1)
-
Kumar, Amit (1)
-
Ligonde, Gardy_Kevin (1)
-
Naden, Aaron B. (1)
-
Neumayer, Sabine M. (1)
-
Rodriguez, Brian J. (1)
-
Williams, Kerisha N. (1)
-
Williams, Kerisha_N (1)
-
Yao, Yulian (1)
-
Zhang, Fengyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Piezoresponse force microscopy (PFM) is routinely used to probe the nanoscale electromechanical response of ferroelectric and piezoelectric materials. However, many challenges remain in the interpretation of the recovered signal. Specifically, many non‐ferroelectric contributions affect the measured response, ranging from electrostatics, to charge injection and trapping, and topographic cross‐talk. Recently, machine learning (ML) has been utilized to identify multiple contributors within complex data systems, such as PFM response. A substantial advancement in ML approaches for PFM techniques is offered by dimensional stacking, enabling encoding of physical and/or chemical correlations within the materials' response across different data dimensions spanning varying ranges. However, dimensional stacking requires appropriate scaling for each dimension (before ML analysis) to minimize undesired information loss. Here, the impact of clustering globally and locally scaled parameters in polarization switching experiments via resonant PFM (RPFM) are discussed. Specifically, dimensional stacking of scaled parameters can mask or enhance ferroelectric and non‐ferroelectric behaviors, and aid identification of various physical phenomena contributing to the measured RPFM response. This study highlights the importance of data curation for ML, and its role in identifying signal contributors to scanning probe microscopy (SPM)‐based techniques with multidimensional data, such as resonant and/or spectroscopic SPM.more » « less
-
Zhang, Fengyuan; Williams, Kerisha N.; Edwards, David; Naden, Aaron B.; Yao, Yulian; Neumayer, Sabine M.; Kumar, Amit; Rodriguez, Brian J.; Bassiri‐Gharb, Nazanin (, Small Methods)Abstract Scanning Probe Microscopy (SPM) based techniques probe material properties over microscale regions with nanoscale resolution, ultimately resulting in investigation of mesoscale functionalities. Among SPM techniques, piezoresponse force microscopy (PFM) is a highly effective tool in exploring polarization switching in ferroelectric materials. However, its signal is also sensitive to sample‐dependent electrostatic and chemo‐electromechanical changes. Literature reports have often concentrated on the evaluation of theOff‐fieldpiezoresponse, compared toOn‐fieldpiezoresponse, based on the latter's increased sensitivity to non‐ferroelectric contributions. Using machine learning approaches incorporatingboth Off‐andOn‐fieldpiezoresponse response as well asOff‐fieldresonance frequency to maximize information, switching piezoresponse in a defect‐rich Pb(Zr,Ti)O3thin film is investigated. As expected, one major contributor to the piezoresponse is mostly ferroelectric, coupled with electrostatic phenomena duringOn‐fieldmeasurements. A second component is electrostatic in nature, while a third component is likely due to a superposition of multiple non‐ferroelectric processes. The proposed approach will enable deeper understanding of switching phenomena in weakly ferroelectric samples and materials with large chemo‐electromechanical response.more » « less
An official website of the United States government
