skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2026980

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 20, 2025
  2. Multiperiod blending has a number of important applications in a range of industrial sectors. It is typically formulated as a nonconvex mixed integer nonlinear program (MINLP), which involves binary variables and bilinear terms. In this study, we first propose a reformulation of the constraints involving bilinear terms using lifting. We introduce a method for calculating tight bounds on the lifted variables calculated by aggregating multiple constraints. We propose valid constraints derived from the reformulation-linearization technique (RLT) that use the bounds on the lifted variables to further tighten the formulation. Computational results indicate our method can substantially reduce the solution time and optimality gap. Summary of Contribution: In this paper, we study the multiperiod blending problem, which has a number of important applications in a range of industrial sectors, such as refining, chemical production, mining, and wastewater management. Solving this problem efficiently leads to significant economic and environmental benefits. However, solving even medium-scale instances to global optimality remains challenging. To address this challenge, we propose a variable bound tightening algorithm and tightening constraints for multiperiod blending. Computational results show that our methods can substantially reduce the solution time and optimality gap. 
    more » « less