skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The biochemical and physical properties of a scaffold can be tailored to elicit specific cellular responses. However, it is challenging to decouple their individual effects on cell‐material interactions. Here, we solvent‐cast 3D printed different ratios of high and low molecular weight (MW) poly(caprolactone) (PCL) to fabricate scaffolds with significantly different stiffnesses without affecting other properties. Ink viscosity was used to match processing conditions between inks and generate scaffolds with the same surface chemistry, crystallinity, filament diameter, and architecture. Increasing the ratio of low MW PCL resulted in a significant decrease in modulus. Scaffold modulus did not affect human mesenchymal stromal cell (hMSC) differentiation under osteogenic conditions. However, hMSC response was significantly affected by scaffold stiffness in chondrogenic media. Low stiffness promoted more stable chondrogenesis whereas high stiffness drove hMSC progression toward hypertrophy. These data illustrate how this versatile platform can be used to independently modify biochemical and physical cues in a single scaffold to synergistically enhance desired cellular response. 
    more » « less
  2. Abstract Pure molybdenum disulfide (MoS2) solid lubricant coatings could attain densities comparable to doped films (and the associated benefits to wear rate and environmental stability) through manipulation of the microstructure via deposition parameters. Unfortunately, pure films can exhibit highly variable microstructures and mechanical properties due to processes that are not controlled during deposition (i.e., batch-to-batch variation). This work focuses on developing a relationship between density, hardness, friction, and wear for pure sputtered MoS2coatings. Results show that dense films (ρ = 4.5 g/cm3) exhibit a 100 × lower wear rate compared to porous coatings (ρ = 3.04–3.55 g/cm3). The tribological performance of high density pure MoS2coatings is shown to surpass that of established composite coatings, achieving a wear rate 2 × (k = 5.74 × 10–8mm3/Nm) lower than composite MoS2/Sb2O3/Au in inert environments. 
    more » « less