Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Shear wave splitting (SWS) patterns at subduction zones are often interpreted by complex mantle flow above or below the slab. However, our recent previous work shows dipping anisotropic slabs can explain observed patterns in Japan. Here, we extend this analysis to the Alaska subduction zone, using 2,567 high‐quality teleseismic SWS measurements from 195 broadband stations. As was found in Japan, the observed SWS patterns in Alaska depend on earthquake backazimuth. The fast‐S polarization directions are either trench parallel or perpendicular in southeastern Alaska and form a prominent circular pattern in central Alaska. We found that a dipping anisotropic slab following the Slab 2.0 geometry, with 30% shear anisotropy, and exhibiting tilted transverse isotropy with a symmetry axis normal to the slab interface, predicts both the fast‐S polarizations and delay times (δt = 1.0–1.5 s). This suggests that intra‐slab anisotropy can be the primary control on SWS, without requiring complex mantle flow.more » « less
-
Abstract Complex shear wave splitting (SWS) patterns in subduction zones are often interpreted geodynamically as resulting from complex mantle flow; however, this may not always be necessary. We analyzed 7,093 high‐quality SWS measurements from teleseismic S waves recorded by Hi‐net stations across the Ryukyu arc in Japan. Our findings show a systematic rotation of the fast S polarization from trench‐parallel to trench‐perpendicular depending on the earthquake backazimuth. For the same earthquake, the measured splitting patterns also vary spatially across the southwest Japan. Using full‐wave seismic modeling, we showed that a dipping slab with ∼30% shear anisotropy of the tilted transverse isotropy (TTI) type, with a symmetry axis perpendicular to the slab interface, can predict the observed delay times and polarization rotation. Our results highlight the importance of considering dipping anisotropic slabs in interpreting SWS at subduction zones.more » « less
-
Key Points The 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption had four episodic seismic subevents with similar waveforms within ∼300 s An unusual upward force jump‐started each subevent A magma hammer explains the force and estimates the subsurface magma mass flux which fits the vent discharge rate based on satellite datamore » « less
-
ABSTRACT The circular-crack model has been widely used in seismology to infer earthquake stress drop. A common assumption is that the background medium is isotropic, although many earthquakes occur in geologically anisotropic settings. In this article, we study the effect of anisotropy on stress drop for a circular crack model and present explicit formalism in both static and kinematic cases. In the static case, we obtain the relationship between stress drop and slip for a circular crack model in an arbitrarily anisotropic medium. Special attention is given to the transversely isotropic (TI) medium. The static formalism is useful in understanding stress drop, but not all quantities are observables. Therefore, we resort to the kinematic case, from which we can infer stress drop using recorded far-field body waves. In the kinematic case, we assume that the crack ruptures circularly and reaches the final displacement determined by the static solutions. The far-field waveforms show that the corner frequency will change with different anisotropic parameters. Finally, we calculate the stress drops for cracks in isotropic and anisotropic media using the far-field waveforms. We find that in an isotropic medium, only shear stress acting on the crack surface contributes to shear slip. However, in a TI medium, if the anisotropy symmetry axis is not perpendicular or parallel to the crack surface, a normal stress (normal to the crack surface) can produce a shear slip. In calculating stress drop for an earthquake in an anisotropic medium using far-field body waves, a large error may be introduced if we ignore the possible anisotropy in the inversion. For a TI medium with about 18% anisotropy, the misfit of inferred stress drop could be up to 41%. Considering the anisotropic information, we can further improve the accuracy of stress-drop inversion.more » « less
An official website of the United States government
