skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2027150

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Key Points The 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption had four episodic seismic subevents with similar waveforms within ∼300 s An unusual upward force jump‐started each subevent A magma hammer explains the force and estimates the subsurface magma mass flux which fits the vent discharge rate based on satellite data 
    more » « less
  2. ABSTRACT The circular-crack model has been widely used in seismology to infer earthquake stress drop. A common assumption is that the background medium is isotropic, although many earthquakes occur in geologically anisotropic settings. In this article, we study the effect of anisotropy on stress drop for a circular crack model and present explicit formalism in both static and kinematic cases. In the static case, we obtain the relationship between stress drop and slip for a circular crack model in an arbitrarily anisotropic medium. Special attention is given to the transversely isotropic (TI) medium. The static formalism is useful in understanding stress drop, but not all quantities are observables. Therefore, we resort to the kinematic case, from which we can infer stress drop using recorded far-field body waves. In the kinematic case, we assume that the crack ruptures circularly and reaches the final displacement determined by the static solutions. The far-field waveforms show that the corner frequency will change with different anisotropic parameters. Finally, we calculate the stress drops for cracks in isotropic and anisotropic media using the far-field waveforms. We find that in an isotropic medium, only shear stress acting on the crack surface contributes to shear slip. However, in a TI medium, if the anisotropy symmetry axis is not perpendicular or parallel to the crack surface, a normal stress (normal to the crack surface) can produce a shear slip. In calculating stress drop for an earthquake in an anisotropic medium using far-field body waves, a large error may be introduced if we ignore the possible anisotropy in the inversion. For a TI medium with about 18% anisotropy, the misfit of inferred stress drop could be up to 41%. Considering the anisotropic information, we can further improve the accuracy of stress-drop inversion. 
    more » « less